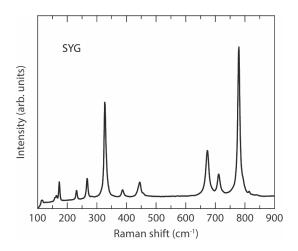

Weak thermal quenching of the luminescence in the $Ca_3Sc_2Si_3O_{12}$: Ce^{3+} garnet phosphor (Supporting information)


Suchinder K. Sharma, a,‡ Yuan-Chih Lin, a Irene Carrasco, b,§ Tobias Tingberg, c Marco Bettinelli, b Maths Karlsson* a

^aDepartment of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden. Tel: +46 31 772 6770; E-mail: maths.karlsson@chalmers.se (Maths Karlsson); ^bLuminescent Materials Laboratory, Department of Biotechnology, University of Verona, and INSTM, UdR Verona, Strada Le Grazie 15, 371 34 Verona, Italy; ^cDepartment of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Göteborg, Sweden [‡]Current address: Institute of Applied Physics, TU Bergakademie Freiberg, Leipziger Str. 23, 09596 Freiberg, Germany.; [§]Current address: Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom;

1 Supporting figures

Fig. S1 Variable temperature luminescence decay curves for (a) SYG:Ce³⁺, (b) CSSO:Ce³⁺, and (c) YAG:Ce³⁺.

Fig. S2 Room temperature Raman spectrum of SYG, measured using a Renishaw InVia Reflex spectrometer equipped with a CCD and a 2400 l/mm grating, as a 532 nm laser source was focused on the sample through a $\times 50$ objective lens (NA = 0.5, power ≈ 2 mW on the sample), for 10 s of acquisition time over 16 accumulations. S1

References

S1 Y.-C. Lin, P. Erhart, M. Bettinelli, M. Karlsson, *To be published*.