Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Bifuran-imide: A Stable Furan Building Unit for Organic Electronics

Sandip V. Mulay^a, Benny Bogoslavky^b, Idan Galanti^a, Ehud Galun^c and Ori Gidron^a*

^{*a*} Institute of Chemistry, The Hebrew University of Jerusalem Edmond J. Safra Campus, Jerusalem, Israel. E-mail: ori.gidron@mail.huji.ac.il

^b The Laboratory for Molecular Structure Analysis, The Institute of Chemistry, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Jerusalem, Israel.

^c Head of Materials Division, R&T Base Unit, DDR&D IMOD, Hakirya, Tel Aviv, Israel

Contents

S1 General InformationS3
S2 Synthetic Procedure
3,3'-Dibromo-2,2'-bifuran (1)
2,2'-Bifuran-3,3'-dicarboxylic acid (2)
2,2'-Bifuran-3,3'dicarboxylic anhydride (3)
<i>N</i> -Hexyl-2,2'-bifuran-3,3'-dicarboximide (BFI-H)S5
<i>N</i> -Hexyl-5-bromo-2,2'-bifuran-3,3'-dicarboximide (4a)S6
<i>N</i> -Hexyl-5,5'-dibromo-2,2'-bifuran-3,3'-dicarboximide (4b)
<i>N</i> -Hexyl-5-(tributylstannyl)-2,2'-bifuran-3,3'-dicarboximide (5)S7
Bis (<i>N</i> -hexyl-2,2'-bifuran-3,3'-dicarboximide) (2BFI-H)S8
Tris (<i>N</i> -Hexyl-2,2'-bifuran-3,3'-dicarboximide) (3BFI-H)
<i>N</i> -(2-octyldodecyl)-2,2'-bifuran-3,3'-dicarboximide (BFI-OD)S10
<i>N</i> -(2-octyldodecyl)- 5,5'-dibromo-2,2'-bifuran-3,3'-dicarboximide (4 c)S10
<i>N</i> -(2-octyldodecyl)-5,5'-bis(tributylstannyl)-2,2'-bifuran-3,3'-dicarboximide (6)S11
Poly- <i>N</i> -(2-octyldodecyl)-2,2'-bifuran-3,3'-dicarboximide (poly(BFI-OD))S12
S3 Supporting Figures
S4 NMR Spectra
S5 X-Ray Data Collection and Structure Refinement
S6 Computational Details
S7 References

S1 General Information

The reagents and chemicals used here are commercially available and were used without further purification unless otherwise stated. Flash chromatography (FC) was performed using CombiFlash SiO₂ columns. The compounds 3,3'-dibromo-2,2'-bifuran,¹ 2-octyldodecylamine,² and N-(2octyldodecyl)-2,2'-bithiophene-3,3'-dicarboximide² were synthesized according to the previously reported procedures. ¹H and ¹³C NMR spectra were recorded in solution on a Bruker-AVIII 400 MHz and 500 MHz spectrometer using tetramethylsilane (TMS) as the external standard. The spectra were recorded using chloroform-d and methanol-d4 as solvents. Chemical shifts are expressed in δ units. IR spectra were obtained as CHCl₃ solutions placed as a thin film on CaF pallet using Nicolet 6700 FT-IR spectrometer. High resolution mass spectra were measured on a HR Q-TOF LCMS. Molecular weights and size distribution were determined by gel permeation chromatography (GPC) in chloroform (with 0.025% toluene as internal standard) against polystyrene standards with a flow rate of 1 mL/min. GPC was performed on a Polymer Standards Service (PSS) system consisting of a linear M column composed of a styrene-divinylbenzene (CDV) copolymer network (*i.e.*, a PSS SDV linear M column), refractive index and UV detectors (Thermo). Data analysis and standard calibration (with PS standards) were performed using PSS WinGPC UniChrom software V8.20, Build 5350. Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) measurements were carried out simultaneously with a NETZSCH STA 449F3 Jupiter instrument at a heating rate of 5 °C min⁻¹ under N₂. Melting points were determined using DSC by taking the peak maximum at a scan rate of 5 °C min⁻¹ and Fisher-Johns melting point apparatus. Cyclic voltammetry (CV) measurements were performed using a Bio-Logic SP-150 Potentiostat in a standard three-electrode setup. Pt wire, Ag/AgCl wire, and Pt disk electrode were used as the counter electrode, pseudo-reference electrode, and working electrode, respectively. Dichloromethene (DCE) containing 0.1 M 0.1 M tetrabutylammonium perchlorate was used as the solvent. A ferrocene/ferrocenium redox couple was used as an internal reference for all measurements. UV-vis absorption and fluorescence spectra of synthesized compounds were recorded on an Agilent Technologies Cary series UV-Vis-NIR spectrophotometer. Fluorescence measurements were carried out with a Horiba Scientific Fluoromax-4 spectrofluorometer. Absolute fluorescence quantum yield measurements were performed using Quanta-Phi integrating sphere connected to Fluoromex-4. Fluorescence lifetime measurements were performed using Fluoro-Hub-B, equipped with NanoLed-390 as light source.

S2 Synthetic Procedure

3,3'-Dibromo-2,2'-bifuran $(1)^1$

A solution of lithium diisopropylamide (LDA; 37.4 mL, 2.0 M in hexane) was added dropwise to a solution of 3-bromo-furan (10 g, 68.04 mmol) in 60 mL dry tetrahydrofuran (THF) at -78 °C under N₂. The reaction mixture was then stirred under the same conditions. After 1.5 h, CuCl₂ (10 g, 74.8 mmol) was added as a single portion and the resulting solution was allowed to reach room temperature slowly and was stirred overnight. The reaction mixture was then added into 100 mL water with 5 g glycine at 0 °C, filtered, and the filtrate was extracted with diethyl ether (3 × 80 mL), dried (Na₂SO₄), and concentrated. The residue obtained was purified by flash column chromatography on silica gel with hexane as eluent to give **1** as a white solid (6.7 g, 69%). ¹**H NMR** (400 MHz, chloroform-*d*) δ 7.47 (d, *J* = 1.9 Hz, 2H), 6.55 (d, *J* = 1.9 Hz, 2H).

2,2'-Bifuran-3,3'-dicarboxylic acid (2)

To a solution of *n*-BuLi (31.2 mL, 50.0 mmol, 1.6 M in hexane) in dry THF (50 mL), 3,3'dibromobifuran (1) (5.84 g, 20.0 mmol) in dry THF (40 mL) was added dropwise over a period of 30 minutes at -70 °C. The resulting solution was stirred at -70 °C until it becomes white slurry (about 2 hours). To the slurry was added dry ice (7.0 g, 160.0 mmol) at -70 °C. Then, the mixture was gradually warmed to room temperature. After stirring for 5 hours at room temperature, the reaction mixture was quenched with methanol (5 mL), and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography on silica gel using AcOH/CH₂Cl₂/methanol (1:95:4) as eluent to give **2** as a light yellow solid (3.38 g, 76%). ¹**H NMR** (400 MHz, methanol-*d*) δ 7.68 (d, *J* = 2.0 Hz, 2H; H–C(5)), 6.87 (d, *J* = 1.9 Hz, 2H, H–C(4)); ¹³C **NMR** (101 MHz, methanol-*d*) δ 165.75 (2 C(6)), 147.34 (2 C(2)), 145.11 (2 C(5)), 121.08 (2 C(3)), 112.99 (2 C(4)); **HRMS** (ESI) calcd for C₁₀H₇O₆ 223.0243, found 223.0237 (M + H)⁺.

2,2'-Bifuran-3,3'dicarboxylic anhydride (3)

A solution of (2,2'-bifuran)-3,3'-dicarboxylic acid (2) (3.3 g, 14.9 mmol) in acetic anhydride (100 mL) was stirred under reflux conditions for 12 h. Acetic anhydride was removed by distillation under reduced pressure. The residue thus obtained was purified by flash column chromatography on silica gel using hexane/ethyl acetate (4:1) as eluent to give anhydride **3** as a light yellow solid (2.46 g, 81%), mp 205-206 °C. ¹H NMR (400 MHz, chloroform-*d*) δ 7.61 (d, *J* = 1.6 Hz, 2H; H–C(5)), 7.11 (d, *J* = 1.6 Hz, 2H; H–C(4)); ¹³C NMR (101 MHz, chloroform-*d*) δ 154.35 (2 C(6)), 145.35 (2 C(2)), 144.74 (2 C(5)), 116.27 (2 C(3)), 113.93 (2 C(4)); IR (v_{max}) 3149, 3123, 2924, 2859, 1730, 1704, 1627, 1497, 1446, 1295, 1266, 1161, 1131, 1093 cm⁻¹; HRMS (ESI) calcd for C₁₀H₅O₅ 205.0137, found 205.0130 (M + H)⁺.

N-Hexyl-2,2'-bifuran-3,3'-dicarboximide (BFI-H)

To a solution of anhydride **3** (2.04 g, 10.0 mmol) in dry CH₂Cl₂ (100 mL) was added a solution of 1-hexylamine (1.6 mL, 12.0 mmol) in CH₂Cl₂ (20 mL) dropwise under N₂. After addition, the reaction mixture was stirred under reflux for 12 h. The reaction mixture was cooled to room temperature and then SOCl₂ (1.1 mL, 15.0 mmol) was added dropwise. The reaction mixture was again refluxed for 15 h. The reaction was quenched with a saturated aqueous (sat. aq.) solution of NaHCO₃ (50 mL). The separated aqueous layer was extracted with CH₂Cl₂ (2 × 50 mL), dried (Na₂SO₄), filtered, and concentrated. The residue obtained was purified by flash column chromatography on silica gel using hexane and ethyl acetate (4:1) as eluent to give **BFI-H** as a white solid (2.53 g, 88%), mp 72 °C. ¹**H NMR** (500 MHz, chloroform-*d*) δ 7.54 (d, *J* = 1.9 Hz,

2H; H–C(5)), 7.15 (d, J = 1.9 Hz, 2H; H–C(4)), 4.21 (t, J = 7.8, 2H; –CH₂(7)), 1.69-1.63 (m, 2H; –CH₂(8)), 1.42-1.30 (m, 6H; –CH₂(9-11), 0.88 (t, J = 7.1 Hz, 3H; –CH₃(12)); ¹³C NMR (101 MHz, chloroform-*d*) δ 160.42 (2 C(6)), 143.64 (2 C(5)), 143.49 (2 C(2)), 120.40 (2 C(3)), 114.17 (2 C(4)), 45.29 (C(7)), 31.65 (C(10)), 27.61 (C(8)), 26.98 (C(9)), 22.71 (C(11)), 14.17 (C(12)); **IR** (v_{max}) 3131, 2956, 2930, 2858, 1666, 1630, 1579, 1569, 1508, 1467, 1383, 1339, 1316, 1288, 1225, 1193, 1168, 1140, 1112, 1093, 1051 cm⁻¹; **HRMS** (ESI) calcd for C₁₆H₁₈NO₄ 288.1230, found 288.1254 (M+H)⁺.

N-Hexyl-5-bromo-2,2'-bifuran-3,3'-dicarboximide (4a)

Bromine (0.18 mL, 3.6 mmol) and a catalytic amount of FeCl₃ (10 mg, 2 mol%) were added to a solution of imide **BFI-H** (0.862 g, 3.0 mmol) in CH₂Cl₂ (40 mL) and the reaction mixture was stirred in the dark for 4 h. After completion of the reaction, it was quenched using a sat. aq. solution of Na₂SO₃ and stirred for a further 30 min. The reaction mixture was poured into CH₂Cl₂ (150 mL) and washed with water (2 × 100 mL), brine, dried (Na₂SO₄), filtered, and concentrated. The residue obtained was purified by flash column chromatography on silica gel using hexane and CH₂Cl₂ (1:1) as eluent to give **4a** as a white solid (0.62 g, 56%), mp 94-96 °C. ¹H NMR (500 MHz, chloroform-*d*) δ 7.55 (d, *J* = 1.9 Hz, 1H; H–C(5')), 7.15 (d, *J* = 1.9 Hz, 1H; H–C(4')), 7.07 (s, 1H; H–C(4)), 4.18 (t, *J* = 7.8, 2H; –CH₂(7)), 1.67-1.61 (m, 2H; –CH₂(8)), 1.40-1.30 (m, 6H; –CH₂(9-11)), 0.88 (t, *J* = 7.1 Hz, 3H; –CH₃(12)); ¹³C NMR (125 MHz, chloroform-*d*) δ 160.09 (C(6)), 159.37 (C(6')), 144.59 (C(2')), 143.95 (C(5')), 142.45 (C(2)), 125.67 (C(3)), 121.92 (C(5)), 120.45 (C(3')), 115.58 (C(4)), 114.28 (C(4')), 45.40 (C(7)), 31.64 (C(10)), 27.57 (C(8)), 26.96 (C(9)), 22.71 (C(11)), 14.18 (C(12)); **IR** (v_{max}) 3149, 3122, 2971, 2953, 2935, 2869, 2848, 1656, 1622, 1575, 1523, 1500, 1453, 1426, 1375, 1337, 1273, 1242, 1221, 1182, 1150, 1125, 1100, 1061, 1037 cm⁻¹; **HRMS** (ESI) calcd for C₁₆H₁₇BrNO₄ 366.0341, found 366.0357 (M+H)⁺.

N-Hexyl-5,5'-dibromo-2,2'-bifuran-3,3'-dicarboximide (4b)

Bromine (0.62 mL, 12.0 mmol) and a catalytic amount of FeCl₃ (10 mg, 2 mol%) were added to a solution of imide **BFI-H** (0.862 g, 3.0 mmol) in CH₂Cl₂ (40 mL) and the reaction mixture was stirred in the dark for 4 h. After completion of the reaction, it was quenched using a sat. aq. solution of Na₂SO₃ and stirred for a further 30 min. The reaction mixture was poured into CH₂Cl₂ (150 mL) and washed with water (2 × 100 mL), brine, dried (Na₂SO₄), filtered, and concentrated. The residue obtained was purified by flash column chromatography on silica gel using hexane and ethyl acetate (9:1) as eluent to give **4b** as a white solid (1.29 g, 97%), mp 133-135 °C. ¹**H** NMR (500 MHz, chloroform-*d*) δ 7.06 (s, 2H; H–C(4), 4.16 (t, *J* = 7.8, 2H; –C*H*₂(7)), 1.65-1.59 (m, 2H; –C*H*₂(8)), 1.38-1.29 (m, 6H; –C*H*₂(9-11)), 0.88 (t, *J* = 7.1 Hz, 3H; –C*H*₃(12)); ¹³**C** NMR (125 MHz, chloroform-*d*) δ 159.06 (2 C(6)), 143.52 (2 C(2)), 126.12 (2 C(3)), 121.92 (2 C(5)), 115.69 (2 C(4)), 45.51 (C(7)), 31.62 (C(10)), 27.52 (C(8)), 26.93 (C(9)), 22.71 (C(11)), 14.18 (C(12)); **IR** (v_{max}) 3125, 3102, 2919, 2871, 2852, 1668, 1621, 1581, 1525, 1500, 1462, 1376, 1333, 1272, 1231, 1174, 1107, 1091, 1067 cm⁻¹; **HRMS** (ESI) calcd for C₁₆H₁₆Br₂NO₄ 445.9421, found 445.9435 (M+H)⁺.

N-Hexyl-5-(tributylstannyl)-2,2'-bifuran-3,3'-dicarboximide (5)

A solution of lithium diisopropylamide (LDA; 0.55 mL, 2.0 M in hexane, 1.1 mmol) was added dropwise to a solution of *N*-hexyl-2,2'-bifuran-3,3'-dicarboximide (**BFI-H**) (287 mg, 1.0 mmol) in dry THF (15 mL) at -85 °C under N₂ and stirred for 1 h. Bu₃SnCl (0.33 mL, 1.2 mmol) was added dropwise, and the reaction mixture was allowed to reach room temperature and stirred for 2 h. The mixture was quenched with water, extracted with CH_2Cl_2 (2 × 40 mL), dried (Na₂SO₄), filtered, and evaporated. The residue obtained was purified by flash column chromatography on silica gel basified with trimethylamine using hexane as eluent to give **5** as a colorless oil (300 mg, 52%). ¹**H NMR** (400 MHz, chloroform-*d*) δ 7.53 (d, *J* = 1.9 Hz, 1H), 7.25 (s, 1H), 7.15 (d, *J* = 1.9 Hz, 1H), 4.22 (t, *J* = 7.7, 2H), 1.68-1.55 (m, 8H), 1.39-1.30 (m, 12H), 1.20-1.15 (m, 6H), 0.90 (t, *J* = 7.2 Hz, 12H); ¹³**C NMR** (101 MHz, chloroform-*d*) δ 165.72, 160.90, 160.65, 147.59, 144.09, 143.22, 125.17, 120.64, 119.33, 114.05, 45.19, 31.67, 28.97 (3C), 27.67, 27.25 (3C), 27.01 22.72, 14.18, 13.74 (3C), 10.59 (3C); **IR** (v_{max}) 3130, 2956, 2925, 2871, 2854, 1664, 1632, 1579, 1520, 1489,1447, 1373, 1338, 1298, 1237, 1189, 1155, 1133, 1094, 1066 cm⁻¹; **HRMS** (ESI) calcd for C₂₈H₄₄NO₄Sn 578.2292, found 578.2290 (M+H)⁺.

Bis (N-hexyl-2,2'-bifuran-3,3'-dicarboximide) (2BFI-H)

Pd(PPh₃)₄ (23 mg, 0.02 mmol) was added to a solution of *N*-hexyl-5-bromo-2,2'-bifuran-3,3'dicarboximide (**4a**) (146 mg, 0.40 mmol) and *N*-hexyl-5-(tributylstannyl)-2,2'-bifuran-3,3'dicarboximide (**5**) (300 mg, 0.52 mmol) in dry and degassed toluene (10 mL), and the reaction mixture was stirred at 90 °C for 24 h under nitrogen. Then reaction mixture was cooled to room temperature and the solvent was evaporated under reduced pressure. The residue obtained was purified by flash column chromatography on silica gel using hexane and dichloromethane (1:8) as eluent to give **2BFI-H** as a yellow solid (140 mg, 61%), mp 218 °C; **¹H NMR** (500 MHz, chloroform-*d*) δ 7.60 (d, *J* = 1.9 Hz, 2H; H–C(5)), 7.47 (s, 2H; H–C(4')), 7.18 (d, *J* = 1.9 Hz; H– C(4)), 4.21 (t, *J* = 7.8, 4H; –CH₂(7)), 1.71-1.63 (m, 4H; –CH₂(8)), 1.42-1.30 (m, 12H; –CH₂(9-11)), 0.89 (t, *J* = 7.1 Hz, 6H; –CH₃(12)); ¹³C NMR (125 MHz, chloroform-*d*) δ 160.06 (2 C(6)), 159.80 (2 C(6')), 144.78 (2 C(5')), 144.26 (2 C(5)), 143.30 (2 C(2')), 142.62 (2 C(2)), 121.78 (2 C(3)), 121.40 (2 C(3')), 114.54 (2 C(4)), 111.44 (2 C(4')), 45.42 (2 C(7)), 31.66 (2 C(10)), 27.60 (2 C(8)), 26.98 (2 C(9)), 22.73 (2 C(11)), 14.19 (2 C(12)); **IR** (v_{max}) 3154, 3123, 2955, 2927, 2927, 2856, 1666, 1628, 1577, 1490, 1452, 1377, 1333, 1305, 1237, 1192, 1160, 1133, 1100, 1069 cm⁻ ¹; **HRMS** (ESI) calcd for C₃₂H₃₃N₂O₈ 573.2237, found 573.2229 (M+H)⁺.

Tris (N-Hexyl-2,2'-bifuran-3,3'-dicarboximide) (3BFI-H)

Tetrakis(triphenylphosphine)palladium (Pd(PPh₃)₄; 15 mg, 0.013 mmol) was added to a solution of N-hexyl-5,5'-dibromo-2,2'-bifuran-3,3'-dicarboximide (4b) (111 mg, 0.25 mmol) and N-hexyl-5-(tributylstannyl)-2,2'-bifuran-3,3'-dicarboximide (5) (432 mg, 0.75 mmol) in dry and degassed toluene (10 mL), and the reaction mixture was stirred at 90 °C for 24 h under nitrogen. Then reaction mixture was cooled to room temperature and the solvent was evaporated under reduced pressure. The residue obtained was purified by flash column chromatography on silica gel using dichloromethane and ethyl acetate (95:5) as eluent to give **3BFI-H** as a yellow solid (96 mg, 45%), mp 294 °C; ¹**H** NMR (500 MHz, chloroform-*d*) δ 7.63 (d, *J* = 1.9 Hz, 2H; H–C(5)), 7.52 (s, 2H; H–C(3")), 7.45 (s, 2H; H–C(4')), 7.18 (d, J = 1.8 Hz, 2H; H–C(4)), 4.20 (t, J = 7.6, 6H; –CH₂(7)), 1.67 (quint, J = 7.6 Hz, 6H; $-CH_2(8)$), 1.43-1.33 (m, 18H; $-CH_2(9-11)$), 0.90 (t, J = 7.1 Hz, 9H; -CH₃(12)); ¹³C NMR (125 MHz, chloroform-d) δ 160.01 (2 C(6)), 159.68 (2 C(6')), 159.41 (2 C(6")), 145.28 (2 C(2')), 144.49 (2 C(2")), 144.39 (2 C(5)), 143.41 (2 C(5")), 142.52 (2 C(2)), 142.28 (2 C(5')), 122.72 (2 C(4")), 121.81 (2 C(3)), 121.56 (2 C(3')), 114.59 (2 C(4)), 112.00 (2 C(3")), 111.66 (2 C(4')), 45.56 (1 C(7')), 45.43 (2 C(7)), 31.66 (3 C(10)), 27.61 (2 C(8)), 27.59 (1 C(8')), 26.99 (3 C(9)), 22.75 (3 C(11)), 14.21 (3 C(12)); **IR** (v_{max}) 3128, 2955, 2923, 2854, 1661, 1622, 1574, 1508, 1490, 1447, 1377, 1332, 1303, 1275, 1247, 1167, 1132, 1097, 1070, 1046 cm⁻ ¹; **HRMS** (ESI) calcd for $C_{48}H_{47}N_3O_{12}Na\ 880.3052$, found 880.3041 (M + Na)⁺.

N-(2-octyldodecyl)-2,2'-bifuran-3,3'-dicarboximide (BFI-OD)

To a solution of anhydride 3 (1.5 g, 7.34 mmol) in dry CH₂Cl₂ (80 mL) was added a solution of 2octyldodecylamine (2.4 g, 8.07 mmol) in CH₂Cl₂ (20 mL) dropwise under N₂. After addition, the reaction mixture was stirred under reflux for 12 hr. The reaction mixture was cooled to room temperature and then SOCl₂ (0.87 mL, 12.0 mmol) was added dropwise. The reaction mixture was again refluxed for 15 hr. The reaction was quenched using a sat. aq. solution of NaHCO₃ (20 mL). The aqueous layer was extracted with CH_2Cl_2 (2 × 80 mL), dried (Na₂SO₄) and concentrated. The residue obtained was purified by flash column chromatography on silica gel using hexane and ethyl acetate (9:1) as eluent to give **BFI-OD** as a colorless oil (2.81 g, 79%). ¹**H NMR** (500 MHz, chloroform-d) δ 7.54 (d, J = 1.9, 2H; H-C(5)), 7.16 (d, J = 1.9, 2H; H-C(4)), 4.24 (d, J = 7.2, 2H; $-CH_2$ -CH), 1.91-1.86 (m, 1H; $-CH_2$ -CH), 1.38-1.18 (m, 32H; 16(CH₂)), 0.87 (t, J = 7.1 Hz, 3H; (CH_3) , 0.86 (t, J = 6.8 Hz, 3H; (CH_3)); ¹³C NMR (125 MHz, chloroform-d) δ 160.84 (2 C(6)), 143.60 (2 C(5)), 143.41 (2 C(2)), 120.41 (2 C(3)), 114.35 (2 C(4)), 48.56, 36.45, 32.07, 32.03, 31.85 (2C), 30.21 (2C), 29.79, 29.77, 29.74, 29.69, 29.48, 29.44, 26.65 (2C), 22.82, 22.80, 14.25 (2C); **IR** (v_{max}) 3133, 2955, 2925, 2854, 1668, 1633, 1580, 1508, 1466, 1379, 1314, 1283, 1187, 1140, 1116, 1050, 1030 cm⁻¹; **HRMS** (ESI) calcd for $C_{30}H_{46}NO_4$ 484.3427, found 484.3421 (M + H)⁺.

N-(2-octyldodecyl)- 5,5'-dibromo-2,2'-bifuran-3,3'-dicarboximide (4c)

Bromine (0.32 mL, 6.0 mmol) and a catalytic amount of FeCl₃ (5 mg, 2 mol%) were added to the solution of *N*-(2-octyldodecyl)-2,2'-bifuran-3,3'-dicarboximide (**BFI-OD**) (0.73 g, 1.5 mmol) in CH₂Cl₂ (40 mL) and the reaction mixture was stirred in the dark for 4 hr. After completion of the

reaction it was quenched using a sat. aq. solution of Na₂SO₃ and stirred for a further 30 min. The reaction mixture was poured into CH₂Cl₂ (100 mL) and washed with water (2 × 60 mL), brine, dried (Na₂SO₄), filtered, and concentrated. The residue obtained was purified by flash column chromatography on silica gel using hexane and ethyl acetate (9:1) as eluent to give **4c** as a colorless oil (0.93 g, 96%). ¹**H** NMR (500 MHz, chloroform-*d*) δ 7.07 (s, 2H; H–C(4)), 4.19 (d, *J* = 7.3, 2H; –CH₂-CH), 1.86-1.81 (m, 1H; –CH₂-CH), 1.34-1.18 (m, 32H; 16(CH₂)), 0.87 (t, *J* = 7.0 Hz, 3H; (CH₃)), 0.86 (t, *J* = 7.0 Hz, 3H; (CH₃)); ¹³**C** NMR (125 MHz, chloroform-*d*) δ 159.46 (2 C(6)), 143.45 (2 C(2)), 126.08 (2 C(3)), 121.92 (2 C(5)), 115.86 (2 C(4)), 48.76, 36.37, 32.08, 32.06, 31.80 (2C), 30.18 (2C), 29.80 (2C), 29.74, 29.70, 29.50, 29.46, 26.60 (2C), 22.84, 22.83, 14.27 (2C); **IR** (v_{max}) 3146, 2925, 2854, 1671, 1633, 1585, 1528, 1501, 1458, 1377, 1331, 1264, 1219, 1167, 1119, 1088, 1061 cm⁻¹; **HRMS** (ESI) calcd for C₃₀H₄₄Br₂NO₄ 642.1617, found 642.1598 (M + H)⁺.

A solution of LDA (0.42 mL, 2.0 M in hexane, 0.84 mmol) was added dropwise to a solution of *N*-(2-octyldodecyl)-2,2'-bifuran-3,3'-dicarboximide (**BFI-OD**) (185 mg, 0.38 mmol) in dry THF (15 mL) at -85 °C under N₂ and stirred for 1 h. Bu₃SnCl (0.23 mL, 0.84 mmol) was added dropwise, and the reaction mixture was allowed to reach room temperature and stirred for 2 h. The mixture was quenched with water, extracted with CH₂Cl₂ (2 × 40 mL), dried (Na₂SO₄), filtered, and evaporated. The residue obtained was purified by flash column chromatography on silica gel basified with trimethylamine using hexane as eluent to give **6** as a colorless oil (331 mg, 81%). ¹**H NMR** (400 MHz, chloroform-*d*) δ 7.25 (s, 2H; H–C(4)), 4.25 (d, *J* = 7.1, 2H; –CH₂-CH), 1.93-1.86 (m, 1H; –CH₂-CH), 1.64-1.56 (m, 12H; 6(CH₂) 1.42-1.13 (m, 56H; 28(CH₂)), 0.91 (t, *J* = 7.0 Hz, 18H; (CH₃)), 0.87 (t, *J* = 7.0 Hz, 3H; (CH₃)), 0.86 (t, *J* = 7.0 Hz, 3H; (CH₃)); ¹³C NMR (125 MHz, chloroform-*d*) δ 164.87 (2C), 161.55 (2C), 148.06 (2C), 125.30 (2C), 119.45 (2C), 48.45, 36.62, 32.08, 32.06, 31.93 (2C), 30.26 (2C), 29.81, 29.80 (2C), 29.73, 29.50, 29.46, 29.01 (6C),

27. 30 (6C), 26.77 (2C), 22.84, 22.82, 14.27 (2C), 13.79 (6C), 10.62 (6C); **IR** (ν_{max}) 3132, 2957, 2625, 2871, 2854, 1665, 1633, 1580, 1520, 1490, 1446, 1377, 1340, 1295, 1248, 1236, 1189, 1152, 1133, 1096, 1065, 1027 cm⁻¹; **HRMS** (ESI) calcd for C₅₄H₉₇NO₄Sn₂ 1062.5534, found 1062.5573 (M)⁺.

Poly- N-(2-octyldodecyl)-2,2'-bifuran-3,3'-dicarboximide (poly(BFI-OD))

Pd(PPh₃)₄ (29 mg, 5 mol%) was added to a solution of *N*-(2-octyldodecyl)-5,5'-dibromo-2,2'bifuran-3,3'-dicarboximide (**4c**) (321 mg, 0.50 mmol) and *N*-(2-octyldodecyl)-5,5'bis(tributylstannyl)-2,2'-bifuran-3,3'-dicarboximide (**6**) (531 mg, 0.50 mmol) in dry and degassed dimethylformamide (DMF; 10 mL), and the reaction mixture was stirred at 90 °C for 24 h under nitrogen. The reaction mixture was then allowed to cool to room temperature and poured into 200 mL of methanol, and the precipitate was collected by filtration to give 530 mg of orange solid. The crude material was transferred to a Soxhlet extractor and extracted for 48 h with methanol and a further 24 h with acetone, and then recovered by extraction with hexane. The hexane solution was concentrated, and the polymer precipitated with 150 mL of methanol, filtered, and dried to give **poly(BFI-OD)** as an orange solid (350 mg 36%). ¹**H NMR** (500 MHz, chloroform-*d*) δ 7.5 (bs, 2H), 4.20 (bs, 2H), 1.80 (bs, 1H), 1.64-1.00 (m, 32H), 0.75 (bs, 6H); ¹³**C NMR** (125 MHz, chloroform-*d*) δ 159.19, 144.98, 141.82, 122.94, 112.04, 48.82, 36.52, 32.10, 30.31, 30.16, 29.94, 29.86, 29.82, 29.76, 29.58, 29.55, 26.77, 22.87, 14.29, 14.26; **IR** (v_{max}) 3149, 2925, 2854, 1667, 1634, 1510, 1463, 1445, 1377, 1311, 1259, 1219, 1171, 1115, 1092, 1043 cm⁻¹; **GPC** (30 °C) Molecular weight Mn = 12.5 kDa, Mw = 26.6 kDa, PDI = 2.1.

S3 Supporting Figures

Figure S1. Thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) curves of **BFI-H** recorded at a heating rate 5 °C min⁻¹ under a nitrogen atmosphere.

Figure S2. Thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) curves of **2BFI-H** recorded at a heating rate 5 $^{\circ}$ C min⁻¹ under a nitrogen atmosphere.

Figure S3. Thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) curves of **3BFI-H** recorded at a heating rate 5 $^{\circ}$ C min⁻¹ under a nitrogen atmosphere.

Figure S4. Thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) curves of **poly(BFI-OD**) recorded at a heating rate 5 °C min⁻¹ under a nitrogen atmosphere.

Figure S5. (*left*) Normalized absorbance spectra and (*right*) Normalized emission spectra measured at room temperature in hexane.

Figure S6. (*left*) Normalized absorbance spectra and (*right*) Normalized emission spectra measured at room temperature in CH₃CN.

Figure S7. Thin film normalized absorbance and emission spectra measured at room temperature.

Compounds	$\lambda_{abs}{}^a$	λ_{em}^{a}	Stokes	Φ^a	$\lambda_{abs}{}^b$	λ_{em}^{b}	Stokes	Φ^b	λ_{abs}^{c}	λ_{em}^{c}	Stokes	$E_{g (opt)}^d$
	(nm)	(nm)	shift ^a		(nm)	(nm)	${\rm shift}^b$		(nm)	(nm)	shift ^c	(eV)
			(eV)				(eV)				(eV)	
BFI-H	325	370	0.46	0.56	328	386	0.57	0.75	363	415	0.43	3.10
2BFI-H	389	419	0.16	0.76	392	458	0.46	0.60	410	537	0.72	2.59
3BFI-H	427	465	0.24	0.51	431	481	0.30	0.58	446	584	0.66	2.43
BFI-OD	326	374	0.49	0.31	329	401	0.67	0.65	-	-	-	-
BTI-OD	344	408	0.57	0.62	348	430	0.68	0.71	-	-	-	-
poly(BFI-OD)	529	540	0.05	0.58	533	545	0.05	-	536	595	0.23	2.16

Table S1. Photophysical data measured in hexane and CH₃CN

^{*a*} Measured in hexane, ^{*b*} Measured in CH₃CN, ^{*c*} Measured as a thin by drop casting with CHCl₃ solution, ^{*d*} $E_{gap} = 1242/\lambda_{onset}$.

Figure S8. Normalized absorbance spectra of (a) **BFI-H**, (b) **2BFI-H**, (c) **3BFI-H**, (d) **BTI-OD**, (e) **BFI-OD**, and (f) **poly(BFI-OD** room temperature in CHCl₃, CH₃CN, Hexane and MeOH.

Figure S9. Normalized absorbance spectra and emission spectra measured at room temperature in CHCl₃.

Figure S10. Normalized absorbance spectra and emission spectra measured at room temperature in hexane.

Figure S11. Normalized absorbance spectra and emission spectra measured at room temperature in CH₃CN.

Figure S12. Photostability at normal light in 1,4-dioxane at room temperature a) *ter*-thiophene (**3T**); b) *tetra*-furan (**4F**); c) **BFI-H**; d) **2BFI-H**; e) **3BFI-H**; f) **poly(BFI-OD)**.

Figure S13. Quantum yield of BFI-H measured in the hexane at room temperature.

Figure S14. Quantum yield of 2BFI-H measured in the hexane at room temperature.

Figure S15. Quantum yield of 3BFI-H measured in the hexane at room temperature.

Figure S16. Quantum yield of BFI-OD measured in the hexane at room temperature.

Figure S17. Quantum yield of BTI-OD measured in the hexane at room temperature.

Figure S18. Quantum yield of poly(BFI-OD) measured in the hexane at room temperature.

Figure S19. Quantum yield of BFI-H measured in the CH₃CN at room temperature.

Figure S20. Quantum yield of 2BFI-H measured in the CH₃CN at room temperature.

Figure S21. Quantum yield of 2BFI-H measured in the CH₃CN at room temperature.

Figure S22. Quantum yield of BFI-OD measured in the CH₃CN at room temperature.

Figure S23. Quantum yield of BTI-OD measured in the CH₃CN at room temperature.

Figure S24. Quantum yield of BFI-H measured in the CHCl₃ at room temperature.

Figure S25. Quantum yield of 2BFI-H measured in the CHCl₃ at room temperature.

Figure S26. Quantum yield of 3BFI-H measured in the CHCl₃ at room temperature.

Figure S27. Quantum yield of BFI-OD measured in the CHCl₃ at room temperature.

Figure S28. Quantum yield of BTI-OD measured in the CHCl₃ at room temperature.

Figure S29. Quantum yield of poly(BFI-OD) measured in the CHCl₃ at room temperature.

Figure S30. Quantum yield of BFI-H measured in the solid state at room temperature.

Figure S31. Quantum yield of 2BFI-H measured in the solid state at room temperature.

Figure S32. Quantum yield of 3BFI-H measured in the solid state at room temperature.

Figure S33. Quantum yield of poly(BFI-OD) measured in the solid state at room temperature.

Figure S34. Cyclic voltammograms of **BFI-H**, **2BFI-H**, **3BFI-H**, **poly(BFI-OD)**, **BFI-OD**, and **BTI-OD** (1.5 mg/mL) in 0.1 M tetrabutylammonium perchlorate in dry dichloromethane as solvent using a Pt disk as the working electrode, a Pt-wire counter electrode, scan rate is 100 mV/s Vs Ag/AgCl.

Table S2. Electrochemical data of **BFI-H**, **2BFI-H**, **3BFI-H**, **poly**(**BFI-OD**), **BFI-OD**, and **BTI-OD** (1.5 mg/mL) in 0.1 M tetrabutylammonium perchlorate in dry dichloromethane as solvent using a Pt disk as the working electrode, a Pt-wire counter electrode, scan rate is 100 mV/s Vs Ag/AgCl.

Compounds	E _{ox} (V)	$E_{ox(onset)}(V)$	$E_{1/2ox}(V)$
BFI-H	1.23	0.83	1.05
2BFI-H	1.65	1.30	1.29
3BFI-H	1.60	1.34	1.27
BFI-OD	1.15	0.71	1.00
BTI-OD	1.29	0.88	1.17
Poly(BFI-OD)	1.61	1.28	-

S4. NMR Spectra

Figure S35. ¹H NMR spectrum of 2 in MeOD, measured at 298 K.

Figure S36. ¹³C NMR spectrum of 2 in MeOD, measured at 298 K.

Figure S37. ¹H NMR spectrum of 3 in CDCl₃, measured at 298 K.

Figure S38. ¹³C NMR spectrum of 3 in CDCl₃, measured at 298 K.

Figure S39. HSQC spectrum of 3 in CDCl₃, measured at 298 K.

Figure S40. HMBC spectrum of 3 in CDCl₃, measured at 298 K.

Figure S41. ¹H NMR spectrum of BFI-H in CDCl₃, measured at 298 K.

Figure S42. ¹³C NMR spectrum of BFI-H in CDCl₃, measured at 298 K.

Figure S43. COSY spectrum of BFI-H in CDCl₃, measured at 298 K.

Figure S44. NOESY spectrum of BFI-H in CDCl₃, measured at 298 K.

Figure S45. HSQC NMR spectrum of BFI-H in CDCl₃, measured at 298 K.

Figure S46. HMBC NMR spectrum of BFI-H in CDCl₃, measured at 298 K.

Figure S47. ¹H NMR spectrum of 4b in CDCl₃, measured at 298 K.

Figure S48. ¹³C NMR spectrum of 4b in CDCl₃, measured at 298 K.

Figure S49. COSY spectrum of 4b in CDCl₃, measured at 298 K.

Figure S50. NOESY spectrum of 4b in CDCl₃, measured at 298 K.

Figure S51. HSQC NMR spectrum of 4b in CDCl₃, measured at 298 K.

Figure S52. HMBC NMR spectrum of 4b in CDCl₃, measured at 298 K.

Figure S53. ¹H NMR spectrum of 4a in CDCl₃, measured at 298 K.

Figure S54. ¹³C NMR spectrum of 4ain CDCl₃, measured at 298 K.

Figure S55. COSY spectrum of 4a in CDCl₃, measured at 298 K.

Figure S56. NOESY spectrum of 4a in CDCl₃, measured at 298 K.

Figure S57. HSQC NMR spectrum of 4a in CDCl₃, measured at 298 K.

Figure S58. HMBC NMR spectrum of 4a in CDCl₃, measured at 298 K.

Figure S59. ¹H NMR spectrum of 5 in CDCl₃, measured at 298 K.

Figure S60. ¹³C NMR spectrum of 5 in CDCl₃, measured at 298 K.

Figure S61. ¹H NMR spectrum of 2BFI-H in CDCl₃, measured at 298 K.

Figure S62. ¹³C NMR spectrum of 2BFI-H in CDCl₃, measured at 298 K.

Figure S63. HSQC NMR spectrum of 2BFI-H in CDCl₃, measured at 298 K.

Figure S64. HMBC NMR spectrum of 2BFI-H in CDCl₃, measured at 298 K.

Figure S65. ¹H NMR spectrum of **3BFI-H** in CDCl₃, measured at 298 K.

Figure S66. ¹³C NMR spectrum of **3BFI-H** in CDCl₃, measured at 298 K.

Figure S67. HSQC NMR spectrum of 3BFI-H in CDCl₃, measured at 298 K.

Figure S68. HMBC NMR spectrum of 3BFI-H in CDCl₃, measured at 298 K.

Figure S69. ¹H NMR spectrum of BFI-OD in CDCl₃, measured at 298 K.

Figure S70. ¹³C NMR spectrum of BFI-OD in CDCl₃, measured at 298 K.

Figure S71. HSQC NMR spectrum of BFI-OD in CDCl₃, measured at 298 K.

Figure S72. HMBC NMR spectrum of BFI-OD in CDCl₃, measured at 298 K.

Figure S73. ¹H NMR spectrum of **4c** in CDCl₃, measured at 298 K.

Figure S74. ¹³C NMR spectrum of 4c in CDCl₃, measured at 298 K.

Figure S75. COSY spectrum of 4c in CDCl₃, measured at 298 K.

Figure S76. NOESY spectrum of 4c in CDCl₃, measured at 298 K.

Figure S77. HSQC NMR spectrum of 4c in CDCl₃, measured at 298 K.

Figure S78. HMBC NMR spectrum of 4c in CDCl₃, measured at 298 K.

Figure S79. ¹H NMR spectrum of 6 in CDCl₃, measured at 298 K.

Figure S80. ¹³C NMR spectrum of 6 in CDCl₃, measured at 298 K.

Figure S81. ¹H NMR spectrum of poly(BFI-OD) in CDCl₃, measured at 298 K.

Figure S82. ¹³C NMR spectrum of poly(BFI-OD) in CDCl₃, measured at 298 K.

Sample :	SVM-01-94	hexane				
Integration from:	Tuesday	03/20/18	17:15:08			5.031 ml
Integration to :	Tuesday	03/20/18	17:22:12			12.091 ml
Calibration File :	Raju sandip	o calibration	chcl3 21	03 2018.CAL	Eluent :	CHCI3
MHK - A (Cal.):	0.000E+0				MHK - K (Cal.):	1.000E+0 ml/g
Int.standcal.:	13.220 ml				Int.standsam.:	ml
Pump :	PSS SECci	urity			Flowrate :	1.000 ml/min
Concentration :	2.531 g/l				Inject volume :	100.000 ul
Column 1 :	PSS SDV 5	μm			Temperature :	35.000 °C
Detector 1 :	PSS SECci	urity UV			Delay volume :	0.000 ml
Detector 2 :	PSS SECci	urity RI			Delay volume :	0.100 ml
Operator :	gpc admin				Acquisition interv	/al 1.000 sec

PSS SECcurity RI

Mn :	1.2529e4	g/mol			
Mw :	2.6622e4	g/mol			
Mz :	4.7258e4	g/mol			
Mv:	0.000000	g/mol			
D :	2.1249e0				
[n]:	0.000000	ml/g			
Vp :	9.6333e0	ml			
Mp:	1.9726e4	g/mol			
A :	6.446e-2	ml*V			
< 460	0.00				
w% :	100.00				
> 307635000.00					

Figure S83. GPC graph of poly(BFI-OD) measured in CHCl₃ at room temperature.

S5 X-Ray Data Collection and Structure Refinement

A single crystal of **2**, **3**, **4a**, **4b**, **BFI-H** and **2BFI-H** was attached to a 400/50 MicroMeshesTM with NVH Oil,³ and transferred to a Bruker SMART APEX CCD X-ray diffractometer equipped with a graphite-monochromator. Maintaining the crystals **3** at -150°C , **BFI-H** at -100°C and **2BFI-H** at -130°C was done with a Bruker KRYOFLEX nitrogen cryostat. The system was controlled by a PC running the SMART software package.⁴ Data were collected at room temperature using MoK α radiation (λ =0.71073 Å). Immediately after collection, the raw data frames were transferred to a second PC computer for integration and reduction by the SAINT program package.⁵ The structure was solved and refined by the SHELXTL software package.⁶ The structures have been deposited with the Cambridge Crystallographic Data Centre (CCDC).

Compounds	2	3	BFI-H	
CCDC No.	1839512	1839513	1839516	
Formula	$C_{10}H_6O_6$	$C_{10}H_4O_5$	C ₁₆ H ₁₇ NO ₄	
Formula Weight	222.15	204.13	287.31	
Crystal system	Monoclinic	Monoclinic	Triclinic	
Space group	C2/c	$P2_1/c$	P1-	
Crystal size	0.46 x 0.33 x 0.15	0.40 x 0.12 x 0.10	0.48 x 0.30 x 0.30	
Temperature (K)	296(1)	123 (1)	173(1)	
Wavelength (Å)	0.71073	0.71073	0.71073	
a, (Å)	13.226(4)	9.814(2)	12.422(2)	
b, (Å)	6.747(2)	18.944(4)	12.868(2)	
c , (Å)	10.358(3)	8.825(2)	13.229(2)	
α, (°)	90	90	91.138(2)	
β, (°)	94.474(4)	92.819(4)	92.183(2)	
γ, (°)	90	90	94.864(2)	
Volume (Å ³)	921.5(4)	1638.7(7)	2104.7(5)	
Z	4	8	6	
ρ _{calcd} ,(g cm ⁻¹)	1.601	1.655	1.360	
μ, mm ⁻¹	0.136	0.137	0.098	
No. of reflection(unique)	4546 (986)	14786 (2878)	19501 (7278)	
Rint	0.0233	0.0399	0.0236	
Completeness to θ (%)	97.5	99.4	98.2	
data / restraints /	986/0/86	2878/0/ 271	7278/0/572	
parameters				
goodness-of-fit on F ²	1.181	1.306	1.067	
Final R ₁ and wR ₂ indices	0.0493, 0.1216	0.0758, 0.1485	0.0536, 0.1403	
$[I > 2\sigma(I)]$				
R_1 and wR_2 indices (all	0.0510, 0.1230	0.0795, 0.1504	0.0616, 0.1526	
data)				

Compounds	4 a	4 b	2BFI-H	
CCDC No.	1839515	1839514	1839517	
Formula	$C_{16}H_{16}BrNO_4$	$C_{16}H_{15}Br_2NO_4$	$C_{32}H_{32}N_2O_8 + (1/2$	
			CH ₂ Cl ₂)	
Formula Weight	366.21	445.11	615.06	
Crystal system	Orthorhombic	Monoclinic	Monoclinic	
Space group	Pbca	$P2_1/c$	$P2_1/c$	
Crystal size	0.33 x 0.30 x 0.13	0.52 x 0.21 x 0.12	0.63 x 0.13 x 0.12	
Temperature (K)	292(1)	292(1)	143(1)	
Wavelength (Å)	0.71073	0.71073	0.71073	
a, (Å)	19.822(3)	8.962(1)	16.043(5)	
b, (Å)	7.252(1)	22.105(4)	9.527(3)	
c , (Å)	21.178(3)	8.691(1)	39.12(1)	
α, (°)	90	90	90	
β, (°)	90	104.837(3)	95.887	
γ, (°)	90	90	90	
Volume (Å ³)	3044.3(7)	1664.3(5)	5947(3)	
Z	8	4	8	
ρ _{calcd} ,(g cm ⁻¹)	1.598	1.776	1.374	
μ, mm ⁻¹	2.718	4.889	0.184	
No. of reflection(unique)	32361 (3642)	17960 (3630)	53871(10463)	
Rint	0.0423	0.0376	0.1179	
Completeness to θ (%)	98.6	99.6	99.9	
data / restraints /	3642/0/200	3630/0/244	10463/0/788	
parameters				
goodness-of-fit on F ²	1.012	1.030	1.134	
Final R ₁ and wR ₂ indices	0.0350, 0.0900	0.0334, 0.0802	0.0949, 0.1940	
$[I > 2\sigma(I)]$				
R_1 and wR_2 indices (all	0.0561, 0.1010	0.0494, 0.0849	0.1380, 0.2145	
data)				

Figure S84. ORTEP representation of (a) 2,2'-bifuran-3,3'-dicarboxylic acid (2), (b) *N*-hexyl-5-bromo-2,2'-bifuran-3,3'-dicarboximide (**4a**), and (c) *N*-hexyl-5,5'-dibromo-2,2'-bifuran-3,3'-dicarboximide (**4b**).

S6 Computational Details

All calculations were carried out with the Gaussian 09 series of programs using density function theory (DFT).⁷ Becke's three-parameter exchange functional combined with the Lee–Yang–Parr correlation functional (B3LYP) and with the 6-31G(d) basis set was used for all calculations.⁸ The optimal geometries for all structures were confirmed as minima by frequency calculations. No negative frequencies were found for any structure presented in this work. For all calculated structures, methyl was used instead of hexyl to reduced computation time.

Compound name	Energy (Hartrees)
1BFI	-779.01236330
2BFI	-1556.84327214
3BFI	-2334.67383742
Poly(2BFI)	-1555.66102250

S7 References

- Jin, X-H.; Sheberla, D.; Shimon, L. J. W.; Bendikov, M. J. Am. Chem. Soc. 2015, 136, 2592-2601.
- Letizia, J. A.; Salata, M. R.; Tribout, C. M.; Facchetti, A.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 9679-9694.
- 3. MiTeGen, LLC P.O. Box 3867 Ithaca, NY 14852.
- 4. SMART-NT V5.6, BRUKER AXS GMBH, D-76181 Karlsruhe, Germany, 2002.
- 5. SAINT-NT V5.0, BRUKER AXS GMBH, D-76181 Karlsruhe, Germany, 2002.
- 6. SHELXTL-NT V6.1, BRUKER AXS GMBH, D-76181 Karlsruhe, Germany, 2002.
- Gaussian 09, Revision D.01: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
- (a) Parr, R. G.; Weitao, Y. Density-Functional Theory of Atoms and Molecules; Oxford University Press, 1989; (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785–789; (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.