Supporting Information

A Λ-shaped cyanostilbene derivative: multi-stimuli responsive fluorescence sensors, rewritable information storage and colour converter for w-LED

Wenyan Fang^{a,b}, Wang Zhao^b, Pan Pei^b, Rui Liu^b, Yuyang Zhang^a, Lin Kong^a, Jiaxiang Yang^{a,c*}

^aCollege of Chemistry & Chemical Engineering, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230601, PR China ^b School of Chemical and Materials Engineering of Huainan Normal University, Anhui, Huainan 232038, PR China. ^cState Key Laboratory of Crystal Materials, Shandong University, Jinan 502100, PR China jxyang@ahu.edu.cn

Contents

Supporting Information	.1
1 ¹ H, ¹³ C NMR and mass spectrum of target compound TSA and its precursor TSX .	2
2 TGA and DTG curve of TSA	.4
3 The time-dependent DFT (TD-DFT) calculations	.4
4 Electron density distributions of the frontier molecular orbital	5
5 Time-resolved emission decay curves	.5
6 Fluorescence quenching rates for aromatic nitro compounds	6

1 ¹H, ¹³C NMR and mass spectrum of target compound TSA and its precursor TSX

Fig. S1 The ¹H NMR of compound TSX.

Fig. S2 The ¹H NMR of compound TSA.

Fig. S4 The mass spectrum of compound TSA.

2 TGA and DTG curve of TSA

Fig. S5 The TGA curve of TSA recorded under nitrogen at a heating rate of 10 °C/min. The inset represents DTG curve.

3 The time-dependent DFT (TD-DFT) calculations

Table S1 The wavelength of absorption maximum of TSA, oscillator strength and major orbital

Compound	Experimental	Theoretical	Osc. strength	Major contributions	energy gaps
	λ (nm)	λ (nm)		(% coefficients)	(eV)
TSA	387 40	401	0 2012	H-1→L (56%)	3.0908
		401	0.2913	H→L+1 (26%)	

contributions of experiment and theory calculation

4 Electron density distributions of the frontier molecular orbital

Fig. S6 Electron density distributions of the frontier molecular orbital of compounds TSA calculated at the B3LYP/6-31G(d) level

5 Time-resolved emission decay curves

Fig. S7 Time-resolved emission decay curves of TSA in original and ground states.

6 Fluorescence quenching rates for aromatic nitro compounds

Fig. S8 (a) Fluorescence quenching rates of compound TSA upon addition of various aromatic nitro compounds in EtOH/H₂O ($f_w = 5\%$) mixture. (b) Fluorescence quenching rates of compound TSA toward PA and PA + other aromatic nitro compounds in EtOH/H₂O ($f_w = 5\%$) mixture.

Fig.S9 (a) The temporal stability of the fabricated w-LED. (b) The emission spectra of TSA and YAG:Ce.