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1. Synthetic Procedures
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Scheme S1: Synthesis of the BA precursor. Compounds 1 and 2 were synthesized according to previously
reported procedures.!-> Compound 3 was synthesized based on a procedure found in previous literature
where a similar compound was synthesized.3

4-Aza-5-0x0-N-(prop-2-ynyl)hexadecanamide (4). 4-Aza-5-oxohexadecanoic acid (7) (5.74 g, 2.11 x
102 mol), N,N-dimethylpyridin-4-amine (6.46 g, 5.29 x 102 mol) and N-(3-dimethylaminopropyl)-N’-
ethylcarbodiimide hydrochloride (8.11 g, 4.23 x 102 mol) were dissolved in 150 mL of THF, and
propargylamine (1.35 mL, 2.11 x 10~ mol) was added to the solution. The reaction mixture was stirred at
room temperature for 12 h. After solvent removal, 150 mL of CH;0OH was added, and the mixture was
refluxed until all solid was dissolved and cooled to room temperature. A precipitate was collected by
filtration and dried under vacuum to give the desired product as a white solid (4.70 g, 72%). '"H NMR
(400 MHz, CDCl;) 6 = 6.19 (br, 1H), 5.94 (br, 1H), 4.05 (dd, 2H, J, = 2.4 Hz, J, = 5.2 Hz), 3.54 (q, 2H,
J=5.8 Hz), 2.44 (t, 2H, J = 5.8 Hz), 2.24 (t, 2H, J = 2.6 Hz), 2.15 (t, 2H, J = 7.6 Hz), 1.61 (m, 2H),
1.4~1.2 (m, 16H), 0.88 (t, 3H, J= 6.6 Hz) ppm. *C NMR (101 MHz, CDCl5) 8 =173.5,171.2,79.2,71.7,
36.8,35.5,35.2,31.9, 29.6, 29.6, 29.5, 29.3, 29.3, 29.3, 29.2, 25.7, 22.7, 14.1 ppm. ESI-MS m/z: 309.25
([M+H]", calcd for 309.25). FTIR: © = 3285, 3226, 3057, 2917, 2851, 1662, 1623, 1542 cm’!.

4-Aza-N-[3-(4-bromophenyl)prop-2-ynyl]-5-oxohexadecanamide  (5).  4-Aza-5-oxo-N-(prop-2-
ynyl)hexadecanamide (4) (1.14 g, 3.70 x 10-3 mol), 1,4-dibromobenzene (0.873 g, 3.70 x 10-3 mol), Cul
(35.2 mg, 1.85 x 10* mol) and Pd(PPhs), (300 mg, 2.59 x 10-* mol) were added into a Schlenk flask in a
glove box. After 70 mL of distilled THF and 20 mL of dry (Me,CH),NH were mixed, freeze-pump-thawed
and cannulated into the Schlenk flask, the reaction mixture was stirred at 60 °C for 12 h under Ar and
passed through a silica plug using THF as the eluent. The solvent was evaporated, and the solid was



dissolved in 50 mL of CHCls, washed with 50 mL of brine twice and dried over Na,SO,. After solvent
removal, the residue was chromatographed on silica using 20:1 CH,Cl,:CH;OH as the eluent. The
collected solid was dried under vacuum to give the desired product as a white solid (0.60 g, 35%). 'H
NMR (400 MHz, CDCl;) 6 = 7.44 (d, 2H, J = 8.4 Hz), 7.27 (d, 2H, J = 7.8 Hz), 6.22 (br, 1H), 6.09 (br,
1H), 4.26 (d, 2H, J = 5.6 Hz), 3.55 (q, 2H, J = 6.0 Hz), 2.48 (t, 2H, J = 6.0 Hz), 2.14 (t, 2H, J = 7.6 Hz),
1.58 (m, 2H), 1.4~1.2 (m, 16H), 0.88 (t, 3H, J = 6.8 Hz) ppm. 3*C NMR (101 MHz, CDCl3) 6 = 173.5,
171.1, 133.1, 131.6, 122.8, 121.3, 85.7, 82.4, 36.8, 35.6, 35.2, 31.9, 30.0, 29.6, 29.6, 29.5, 29.3, 29.3,
29.3,25.7,22.7, 14.1 ppm. ESI-MS m/z: 463.19 ([M+H]", calcd for 463.20). FTIR: v = 3270, 3063, 2916,
2848, 1634, 1544, 1464 cm’!.

4-Aza-N-(3-{4-[4-methyl-3,3-bis(propan-2-yl)-3-silapent-1-ynyl|phenyl}prop-2-ynyl)-5-
oxohexadecanamide (6). 4-Aza-N-[3-(4-bromophenyl)prop-2-ynyl]-5-oxohexadecanamide (5) (0.650 g,
1.40 x 1073 mol), Cul (13.3 mg, 7.00 x 10-3 mol) and Pd(PPhs), (113 mg, 9.80 x 10-> mol) were added
into a Schlenk flask in a glove box. After triisopropylsilylacetylene (1.26 mL, 5.60 x 10-3 mol), 50 mL of
distilled THF and 10 mL of dry (Me,CH),NH were mixed, freeze-pump-thawed and cannulated into the
Schlenk flask, the reaction mixture was stirred at 60 °C for 12 h under Ar and passed through a silica plug
using THF as the eluent. The solvent was evaporated, and the solid was dissolved in 50 mL of CHCl;,
washed with 50 mL of brine twice and dried over Na,SO,4. After solvent removal, the residue was
chromatographed on silica using 20:1 CH,Cl,:CH;OH as the eluent. The collected solid was dried under
vacuum to give the desired product as a white solid (0.42 g, 53%). 'H NMR (400 MHz, CDCls) 6 = 7.40
(d, 2H, J= 8.8 Hz), 7.33 (d, 2H, J = 8.8 Hz), 6.20 (br, 1H), 5.94 (br, 1H), 4.28 (d, 2H, J = 5.2 Hz), 3.56
(q, 2H, J =59 Hz), 2.47 (t, 2H, J = 6.0 Hz), 2.14 (t, 2H, J = 7.9 Hz), 1.60 (m, 2H), 1.4~1.2 (m, 16H),
1.12 (m, 21H), 0.88 (t, 3H, J= 6.8 Hz) ppm. *C NMR (101 MHz, CDCl3) 6 =174.0, 171.5, 131.9, 131 .4,
123.6, 122.4, 106.4, 92.8, 86.7, 82.7, 36.7, 35.6, 35.5, 31.9, 29.9, 29.6, 29.6, 29.5, 29.3, 29.3, 29.3, 25.8,
22.7,18.6,14.1, 11.3 ppm. ESI-MS m/z: 565.42 ([M+H]", calcd for 565.42). FTIR: v = 3297, 3067, 2918,
2886, 2155, 1635, 1540 cm’!.

4-Aza-N-|3-(4-ethynylphenyl)prop-2-ynyl]-5-oxododecanamide (7). 4-Aza-N-(3-{4-[4-methyl-3,3-
bis(propan-2-yl)-3-silapent-1-ynyl]phenyl } prop-2-ynyl)-5-oxohexadecanamide (6) (0.300 g, 5.31 x 10
mol) was dissolved in 20 mL of distilled THF, and the solution was stirred at 0 °C under Ar, followed by
dropwise addition of a 1 M THF solution of tetrabutylammonium fluoride (1.00 mL, 1.00 x 10-3 mol) to
the reaction. After 20 min, a drop of H,O was added, and the solvent was evaporated. The resulting solid
was dissolved in 50 mL of CHCl;, washed with 50 mL of brine twice and dried over Na,SO,. After solvent
removal, the residue was chromatographed on silica using 20:1 CHCIl;:CH;0H as the eluent. The
collected solid was dried under vacuum to give the desired product as a white solid (0.11 g, 51%). 'H
NMR (400 MHz, CDCl;) 6 = 7.42 (d, 2H, J = 8.8 Hz), 7.35 (d, 2H, J = 8.4 Hz), 6.22 (br, 1H), 6.08 (br,
1H), 4.28 (d, 2H, J=5.2 Hz), 3.55 (q, 2H, J= 6.0 Hz), 3.16 (s, 1H), 2.47 (t, 2H, J= 5.8 Hz), 2.14 (t, 2H,
J=17.6 Hz), 1.59 (m, 2H), 1.4~1.2 (m, 16H), 0.88 (t, 3H, J = 6.8 Hz) ppm. 13C NMR (101 MHz, CDCl5)
0=173.6,171.2,132.0,131.6, 122.9, 122.2, 86.6, 83.0, 82.8, 79.0, 36.8, 35.5, 35.3, 31.9, 29.9, 29.6, 29.6,
29.5,29.3,29.3,29.3,25.7,22.7, 14.1 ppm. ESI-MS m/z: 409.29 ([M+H]", calcd for 409.29). FTIR: v =
3278, 3061, 2918, 2850, 1635, 1545 cm.
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Scheme S2: Synthesis of the PBA precursor. Compounds 8 and 9 were synthesized according to
previously reported procedures.*>

N,N'-(5-1odo-2-methyl-1,3-phenylene)didodecanamide (10). 5-Iodo-2-methylbenzene-1,3-diamine (9)
(0.250 g, 1.01 x 1073 mol) and anhydrous K,CO3 (0.700 g, 5.06 x 10~ mol) were added into a Schlenk
flask in a glove box, and 100 mL of distilled THF was cannulated into the flask, followed by addition of
dry dodecanoyl chloride (0.60 mL, 2.59 x 10-3 mol). The reaction mixture was stirred and refluxed for 20
h under Ar. The solution was concentrated to 50 mL and filtered. The collected solid was washed with 50
mL of water for three times and dissolved in 150 mL of boiling THF. The solution was cooled to 0 °C,
and a precipitate was obtained by filtration and dried under vacuum to give the desired product as a white
solid (0.49 g, 79%). '"H NMR (400 MHz, CDCls, 333 K) 8 = 7.79 (s, 2H), 7.01 (s, 2H), 2.38 (t, 4H, J =
7.0 Hz), 2.01 (s, 3H), 1.72 (m, 4H), 1.5~1.1 (m, 32H), 0.88 (t, 6H, J = 6.8 Hz) ppm. ESI-MS m/z: 635.31
([M+Na]*, caled for 635.31). FTIR: v = 3272, 2916, 2850, 1656, 1576, 1519 cm!. Note: Because of the
low solubility of this compound, there were not enough signals when 3C NMR was performed.

N,N'-{2-Methyl-5-[4-methyl-3,3-bis(propan-2-yl)-3-silapent-1-ynyl]-1,3-

phenylene}didodecanamide (11). N,N'-(5-iodo-2-methyl-1,3-phenylene)didodecanamide (10) (2.00 g,
3.27 x 1073 mol), Cul (60.0 mg, 3.15 x 10-* mol) and Pd(PPhs), (375 mg, 3.25 x 104 mol) were added
into a Schlenk flask in a glove box. After triisopropylsilylacetylene (1.10 mL, 4.90 x 10-3 mol), 50 mL of
distilled THF and 10 mL of dry (Me,CH),NH were mixed, freeze-pump-thawed and cannulated into the
Schlenk flask, the reaction mixture was stirred at 60 °C for 12 h under Ar and passed through a silica plug
using THF as the eluent. The solvent was evaporated, and the solid was dissolved in 50 mL of CHCl;,
washed with 50 mL of brine twice and dried over Na,SO,4. After solvent removal, the residue was
chromatographed on silica using 20:1 CH,Cl,:CH;OH as the eluent. The collected solid was dried under
vacuum to give the desired product as a white solid (1.57 g, 72%). 'H NMR (400 MHz, CDCls) 6 = 7.55
(br, 2H), 6.93 (br, 2H), 2.38 (t, 4H, J = 6.4 Hz), 2.09 (s, 3H), 1.74 (m, 4H), 1.45~1.15 (m, 32H), 1.10 (m,
21H), 0.88 (t, 6H, J = 6.8 Hz) ppm. 3C NMR (101 MHz, CDCl3) 6 = 172.5, 135.3, 128.0, 126.9, 120.7,



106.1, 90.0, 36.6, 31.9, 29.7, 29.7, 29.7, 29.7, 29.5, 29.4, 29.4, 25.7, 22.7, 18.7, 14.1, 11.3 ppm. ESI-MS
m/z: 667.56 ([M+H]*, calcd for 667.56). FTIR: v = 3232, 3186, 3041, 2923, 2855, 2161, 1652, 1570,
1533, 1461, 1417 cm’.

N,N'-(5-Ethynyl-2-methyl-1,3-phenylene)didodecanamide (12). N,N'-{2-methyl-5-[4-methyl-3,3-
bis(propan-2-yl)-3-silapent-1-ynyl]-1,3-phenylene } didodecanamide (11) (0.650 g, 9.74 x 10 mol) was
dissolved in 20 mL of distilled THF, and the solution was stirred at 0 °C under Ar, followed by dropwise
addition of a 1 M THF solution of tetrabutylammonium fluoride (1.46 mL, 1.46 x 10-3 mol) to the reaction.
After 20 min, a drop of H,O was added. After solvent removal, 70 mL of CH30H and 30 mL of THF
were added. The mixture was refluxed for 20 min, cooled to room temperature and filtered. The collected
solid was dried under vacuum to give the desired product as a white solid (0.41 g, 82%). 'H NMR (400
MHz, CDCls, 333 K) 6 = 7.60 (s, 2H), 6.83 (s, 2H), 3.00 (s, 1H), 2.36 (t, 4H, J= 7.6 Hz), 2.12 (s, 3H),
1.76 (m, 4H), 1.5~1.1 (m, 32H), 0.90 (t, 6H, J = 6.6 Hz) ppm. ESI-MS m/z: 533.41 ([M+Na]", calcd for
533.41). FTIR: © = 3278, 2917, 2850, 1648, 1573, 1521, 1461, 1416 cm'. Note: Because of the low
solubility of this compound, there were not enough signals when 3C NMR was performed.
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Scheme S3: Synthesis of the PZn-OAlk core. Compounds 13, 14, 15, 16, 17 and 18 were synthesized
according to previously reported procedures.®
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according to previously reported procedures.’
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{5,15-Bis[2-(4-methylphenyl)ethynyl]-10,20-bis[2-(3,5,5-

trimethylhexyloxy)ethyl]porphinato}zinc(II). {5,15-Dibromo-10,20-bis[2-(3,5,5-
trimethylhexyloxy)ethyl]porphinato} zinc(IT) (18) (0.075 g, 8.60 x 10~ mol), Cul (1.60 mg, 8.40 x 106
mol) and Pd(PPhs), (15.0 mg, 1.30 x 10~ mol) were added into a Schlenk flask in a glove box. After 4-
ethynyltoluene (0.0440 mL, 3.47 x 10** mol), 50 mL of distilled THF and 10 mL of dry (Me,CH),NH
were mixed, freeze-pump-thawed and cannulated into the Schlenk flask, the reaction mixture was stirred
at 60 °C for 12 h under Ar and passed through a silica plug using THF as the eluent. After solvent removal,
the residue was chromatographed first on silica using CHCl; as the eluent, then on a size exclusion column
using THF as the eluent, and finally on silica again using CHCl; as the eluent. The collected solid was
dried under vacuum to give the desired product as a green solid (0.041 g, 50%). 'H NMR (400 MHz,
CDCl; with a drop of pyridine-D5) 6 = 9.75 (d, 4H, J = 4.0 Hz), 9.49 (d, 4H, J= 3.6 Hz), 7.94 (d, 4H, J
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= 7.2 Hz), 7.38 (d, 4H, J = 7.2 Hz), 5.19 (t, 4H, J = 6.8 Hz), 4.43 (t, 4H, J = 6.8 Hz), 3.61 (t, 4H, J = 6.2
Hz), 2.50 (s, 6H), 2.0~1.0 (m, 10H), 1.0~0.8 (m, 24H) ppm. 3C NMR (101 MHz, CDCIl; with a drop of
pyridine-D5) 6 = 151.3, 150.3, 138.4, 131.4, 131.2, 129.5, 129.2, 121.4, 117.1, 100.3, 96.0, 92.9, 76.4,
69.7, 51.3, 39.2, 36.6, 35.9, 31.2, 30.0, 26.3, 22.9, 21.7 ppm. MALDI-MS m/z: 940.42 ([M+H]*, calcd
for 940.46).

{5,15-Bis(3,5-bis{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}phenyl)-10,20-bis[2-(4-
methylphenyl)ethynyl]porphinato}zinc(Il). [5,15-Bis(3,5-bis{2-[2-(2-
methoxyethoxy)ethoxy]ethoxy} phenyl)-10,20-dibromoporphinato]zinc(Il) (23) (0.075 g, 5.63 x 107
mol), Cul (1.00 mg, 5.25 x 10° mol) and Pd(PPh;)4 (10.0 mg, 8.67 x 10-° mol) were added into a Schlenk
flask in a glove box. After 4-ethynyltoluene (0.0290 mL, 2.29 x 10-* mol), 50 mL of distilled THF and 10
mL of dry (Me,CH),NH were mixed, freeze-pump-thawed and cannulated into the Schlenk flask, the
reaction mixture was stirred at 60 °C for 12 h under Ar and passed through a silica plug using THF as the
eluent. After solvent removal, the residue was chromatographed first on silica using CHClj; as the eluent,
then on a size exclusion column using THF as the eluent, and finally on silica again using CHCI; as the
eluent. The collected solid was washed with hexane and dried under vacuum to give the desired product
as a green solid (0.050 g, 64%). '"H NMR (400 MHz, CDCl; with a drop of pyridine-D5) & = 9.68 (d, 4H,
J=4.8Hz), 8.92 (d, 4H, J=4.8 Hz), 7.92 (d, 4H, J= 8.0 Hz), 7.38 (d, 4H, J=2.4 Hz), 7.36 (d, 4H, J =
7.6 Hz), 6.94 (t, 2H, J = 2.2 Hz), 4.32 (t, 8H, J = 4.6 Hz), 3.94 (t, 8H, J=4.6 Hz), 3.77 (m, 8H), 3.69 (m,
8H), 3.63 (m, 8H), 3.50 (m, 8H), 3.32 (s, 12H), 2.49 (s, 6H) ppm. 13C NMR (101 MHz, CDCl; with a
drop of pyridine-D5) & = 157.8, 152.0, 149.6, 144.6, 138.4, 132.4, 131.5, 130.6, 129.4, 122.0, 121.3,
114.8, 101.1, 101.0, 96.3, 92.7, 71.9, 70.9, 70.7, 70.6, 69.9, 67.8, 59.0 ppm. MALDI-MS m/z: 1401.48
([M+H]", calcd for 1401.56).



2. Supramolecular Polymerization Mechanism
2.a. Estimation of the Degree of Aggregation (0t,g,)

The fraction of aggregated molecules (0,g,) at a given temperature can be calculated from equation S1:7

S _( &(t) - e(agyg)
agg g(mono) - £(agg) (S1)

Where g(mono) and g(agg) stand for the extinction coefficient of the monomer and the fully aggregated

state respectively, and g(t) represents the extinction coefficient at the given temperature (t).
2.b. Isodesmic Model

The fraction of aggregated species (aag,) as a function of temperature can be fit using non-linear least

squares regression method based on equation S2:3

_ 1
Yagg= 1- T-T,
1 + expi©i( - 0.908 AH )
m  (S2)
Elongation constant K, can be calculated from equation S3:8
L N 7Y o ¢ ToRereg
1-a(T) 2 2 (S3)

2.c. Cooperative Model

Supramolecular polymerization that operates following a cooperative mechanism can be dissociated into
two regimes: 1) a nucleation process during which a nucleus formed by n repeating units is formed, and
2) an elongation process during which the nucleus grows toward bigger superstructures that feature n
repeating units at a given temperature.®-!!
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As proposed in the model developed by van der Schoot, the fraction of aggregated species (o) as a function
of temperature in the elongation regime is governed by the following equation:

-AH

e

(T - Te) )

Aggg = asat(l —-exp P
¢ (S4)

Using non-linear least squares regression method based on equation S2 to fit the degree of aggregation as

a function of temperature, the enthalpy associated to the elongation process AH., the elongation

temperature T,, and the correction factor o, can be estimated. Please note that o, is introduced in this

equation to prevent that oL,eg/0s, €Xceeds unity. It is also worth noting that equation S4 can only be used

below the elongation temperature T..

The parameters AH., o, and T, calculated from equation S4 can then be utilized to estimate the fraction
of aggregated building blocks using equation S5:
) (S5)

Please note that K, in equation S5 is a dimensionless equilibrium constant of the activation step at the
elongation temperature.

AH

e

(3 3\71{7 ) 1) RT,? (r-re)

i 3
Aggg = asat(. IK exp

The degree of polymerization <N,> as a function of temperature can be calculated using equation S6:

aa!]!]

1
<N,> =
\/Ta Asqr ~ Aggg (S6)

Please note that n represents the number of building blocks that comprise the aggregate under
investigation.

To calculate the size of the aggregate at the elongation temperature, equation S7 was utilized.

1
Ka(s7)

<N, (T)> =

3
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3. Ground State Electronic Absorption Spectra
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Figure S1: Electronic absorption spectrum recorded at room temperature for PZn-OAlk-PBA in DMF

(c = 5.4 * 10~ M). Please note that this spectrum has been acquired after ramping the solution to 110°C
to ensure that all molecular building blocks are fully individualized. Inset illustrates the deconvoluted
spectra of the B-band transition used to calculate the oscillator strength.
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—— PZn-OTEG-PBA in DME
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Figure S2: Electronic absorption spectrum recorded at room temperature for PZn-OTEG-PBA in DMF
(c = 5.8 * 10> M). Please note that this spectrum has been acquired at room temperature after ramping
the solution to 110°C to ensure that all molecular building blocks are fully individualized. Inset illustrates
the deconvoluted spectra of the B-band transition used to calculate the oscillator strength.
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Figure S3: Electronic absorption spectrum recorded at room temperature for PZn-OAlk-BA in DMF (¢
= 5.1 * 10~ M). Please note that this spectrum has been acquired at room temperature after ramping the
solution to 110°C to ensure that all molecular building blocks are fully individualized. Inset illustrates the
deconvoluted spectra of the B-band transition used to calculate the oscillator strength.
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——100°C PZn-OAIk-PBA in 9% DMF in toluene
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Figure S4: Electronic absorption spectrum recorded at room temperature for PZn-OAlk-PBA in 9%
DMF in toluene (¢ = 5.7 * 10> M). Please note that this spectrum has been acquired at 110°C to ensure

that all molecular building blocks are fully individualized. Inset illustrates the deconvoluted spectra of the
B-band transition used to calculate the oscillator strength.
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1——110°C PZn-OAIlk-BA in toluene
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Figure S5: Electronic absorption spectrum recorded at room temperature for PZn-OAlk-BA in toluene
(¢ =6.50 * 10° M). Please note that this spectrum has been acquired at 110°C to ensure that all
molecular building blocks are fully individualized. Inset illustrates the deconvoluted spectra of the B-
band transition used to calculate the oscillator strength.
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Figure S6: Electronic absorption spectrum recorded at room temperature for PZn-OTEG-PBA in toluene
(c=4.70 * 10> M). Please note that this spectrum has been acquired at 110°C to ensure that all molecular

building blocks are fully individualized. Inset illustrates the deconvoluted spectra of the B-band transition
used to calculate the oscillator strength.
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1 ——0°C PZn-OAIk-PBA in 9% DMF in toluene
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Figure S7: Electronic absorption spectrum recorded at room temperature for PZn-OAlk-PBA in 9%
DMF in toluene (¢ = 5.7 * 10> M). Please note that this spectrum has been acquired at 0°C, temperature
at which building blocks are mainly aggregated.
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Figure S8: Electronic absorption spectrum recorded at room temperature for PZn-OAlk-BA in toluene
(¢ = 6.5 * 10° M). Please note that this spectrum has been acquired at 0°C, temperature at which
building blocks are mainly aggregated.
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Figure S9: Electronic absorption spectrum recorded at room temperature for PZn-OTEG-PBA in toluene
(¢=4.7 * 10° M). Please note that this spectrum has been acquired at 20°C, temperature at which building
blocks are mainly aggregated.
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4. Atomic Force Microscopy Images
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Figure S10: Topographic intermittent contact mode AFM images of [PZn-OAIlk-PBA]g;, from a
temperature treated 9% DMF in toluene suspension drop-casted on a Si surface.
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Figure S11: Topographic intermittent contact mode AFM images of [PZn-OAIlk-PBA] ., from a
temperature treated DMF suspension drop-casted on a Si surface.
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Figure S12. Topographic intermittent contact mode AFM images of [PZn-OAlk-BA]nw from a

temperature treated DMF suspension drop-casted on a Si surface.
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Figure S13: Topographic intermittent contact mode AFM images of [PZn-OAlk-BA]ys from a
temperature treated toluene suspension drop-casted on a Si surface.
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Figure S14: Topographic intermittent contact mode AFM images of [PZn-OTEG-PBA|nw from a
temperature treated DMF suspension drop-casted on a Si surface.
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Figure S15: Topographic intermittent contact mode AFM images of [PZn-OTEG-PBA ], from a
temperature treated toluene suspension drop-casted on a Si surface.
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Figure S16: Topographic intermittent contact mode AFM image of [PZn-OAIlk-Tol]a, from a
temperature treated DMF suspension drop-casted on a Si surface. The height profile corresponds to the
white line in the AFM image.
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Figure S17: Topographic intermittent contact mode AFM image of [PZn-OTEG-Tol]a,, from a
temperature treated DMF suspension drop-casted on a Si surface. The height profile corresponds to the
white line in the AFM image.
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5. Cyclic Voltammetry Measurements
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Figure S18: Cyclic voltammetry responses of PZn-OAIlk-PBA fibers recorded in acetonitrile solvent
showing the anodic (A-D) and cathodic (E-H) redox processes. The blue lines correspond to the tangents
used to measure the onset potentials. All measurements have been calibrated to SCE standard electrode
using Fc/Fc* as an internal potentiometric standard Fc/Fc™ = 0.40 V vs SCE in acetonitrile. Experimental
conditions: 0.1 M TBAP, scan rate = 100 mV s!, glassy carbon electrode, Ag/AgCl reference electrode.
To ensure reproducibility, all the presented measurements have been recorded from different batches of
supramolecular PZn-OAIlk-PBA polymers drop-casted on the working electrode from parent 9% DMF
in toluene solution.
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PZn-OAIlk-PBA Nano-Aggregates
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Figure S19: Cyclic voltammetry response of PZn-OAIk-PBA aggregates recorded in acetonitrile solvent
showing the anodic (A-D) and cathodic (E-H) redox processes. The blue lines correspond to the tangents
used to measure the onset potentials. All measurements have been calibrated to SCE standard electrode
using Fc/Fc* as an internal potentiometric standard Fc/Fc* = 0.40 V vs SCE in acetonitrile. Experimental
conditions: 0.1 M TBAP, scan rate = 100 mV s!, glassy carbon electrode, Ag/AgCl reference electrode.
To ensure reproducibility, all the presented measurements have been recorded from different batches of

individualized PZn-OAIlk-PBA building blocks drop-casted on the working electrode from a parent DMF
solution.
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PZn-OAlk-BA Nanosheets
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Figure S20: Cyclic voltammetry response of PZn-OAIlk-BA nanosheets recorded in acetonitrile solvent
showing the anodic (A-D) and cathodic (E-H) redox processes. The blue lines correspond to the tangents
used to measure the onset potentials. All measurements have been calibrated to SCE standard electrode
using Fc/Fc* as an internal potentiometric standard Fc/Fc* = 0.40 V vs SCE in acetonitrile. Experimental
conditions: 0.1 M TBAP, scan rate = 100 mV s™!, glassy carbon electrode, Ag/AgCl reference electrode.
To ensure reproducibility, all the presented measurements have been recorded from different batches of
supramolecular PZn-OAIk-BA polymers drop-casted on the working electrode from parent toluene
solution.
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PZn-OAlk-BA Nanowires
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Figure S21: Cyclic voltammetry response of PZn-OAlk-BA nanowires recorded in acetonitrile solvent
showing the anodic (A-D) and cathodic (E-H) redox processes. The blue lines correspond to the tangents
used to measure the onset potentials. All measurements have been calibrated to SCE standard electrode
using Fc/Fc* as an internal potentiometric standard Fc/Fc* = 0.40 V vs SCE in acetonitrile. Experimental
conditions: 0.1 M TBAP, scan rate = 100 mV s!, glassy carbon electrode, Ag/AgCl reference electrode.
To ensure reproducibility, all the presented measurements have been recorded from different batches of
individualized PZn-OAlk-BA building blocks drop-casted on the working electrode from a parent DMF
solution.
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Figure S22: Cyclic voltammetry response of PZn-OTEG-PBA fibers recorded in acetonitrile solvent
showing the anodic (A-D) and cathodic (E-H) redox processes. The blue lines correspond to the tangents
used to measure the onset potentials. All measurements have been calibrated to SCE standard electrode
using Fc/Fc* as an internal potentiometric standard Fc/Fc™ = 0.40 V vs SCE in acetonitrile. Experimental
conditions: 0.1 M TBAP, scan rate = 100 mV s!, glassy carbon electrode, Ag/AgCl reference electrode.
To ensure reproducibility, all the presented measurements have been recorded from different batches of
supramolecular PZn-OTEG-PBA polymers drop-casted on the working electrode from parent toluene
solution.
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Figure S23: Cyclic voltammetry response of PZn-OTEG-PBA nanowires recorded in acetonitrile
solvent showing the anodic (A-D) and cathodic (E-H) redox processes. The blue lines correspond to the
tangents used to measure the onset potentials. All measurements have been calibrated to SCE standard
electrode using Fc/Fc* as an internal potentiometric standard Fc/Fc* = 0.40 V vs SCE in acetonitrile.
Experimental conditions: 0.1 M TBAP, scan rate = 100 mV s!, glassy carbon electrode, Ag/AgCl
reference electrode. To ensure reproducibility, all the presented measurements have been recorded from
different batches of individualized PZn-OTEG-PBA building blocks drop-casted on the working
electrode from a parent DMF solution.
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Figure S24: Cyclic voltammetry response of PZn-OAlk-Tol aggregates recorded in acetonitrile solvent

showing the anodic (A-B) and cathodic (C-D) redox processes. The blue lines correspond to the tangents

used to measure the onset potentials. All measurements have been calibrated to SCE standard electrode

using Fc/Fc* as an internal potentiometric standard Fc/Fc* = 0.40 V vs SCE in acetonitrile. Experimental
conditions: 0.1 M TBAP, scan rate = 100 mV s!, glassy carbon electrode, Ag/AgCl reference electrode.

To ensure reproducibility, all the presented measurements have been recorded from different batches of

individualized PZn-OAIKk-Tol building blocks drop-casted on the working electrode from a parent DMF

solution.
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Figure S25: Cyclic voltammetry response of PZn-OTEG-Tol aggregates recorded in acetonitrile solvent
showing the anodic (A-B) and cathodic (C-D) redox processes. The blue lines correspond to the tangents
used to measure the onset potentials. All measurements have been calibrated to SCE standard electrode
using Fc/Fc* as an internal potentiometric standard Fc/Fc™ = 0.40 V vs SCE in acetonitrile. Experimental
conditions: 0.1 M TBAP, scan rate = 100 mV s!, glassy carbon electrode, Ag/AgCl reference electrode.
To ensure reproducibility, all the presented measurements have been recorded from different batches of
individualized PZn-OTEG-Tol building blocks drop-casted on the working electrode from a parent DMF

solution.
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6. NMR and MS Spectra
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Figure 27: '"H NMR spectrum (400 MHz, CDCl;) of Compound 4.
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Figure S29: 'H NMR spectrum (400 MHz, CDCl;) of Compound 5.
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Figure S31: '"H NMR spectrum (400 MHz, CDCl;) of Compound 6.
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Figure S32: 3C NMR spectrum (101 MHz, CDCl;) of Compound 6.
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Figure S34: 3C NMR spectrum (101 MHz, CDCl;) of Compound 7.
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Figure S36: 'H NMR spectrum (400 MHz, CDCl;) of Compound 10.
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Analysis Name D:\Data\UMiami\0425ChLi01_dithr_acetone_rp_700-3500Da\0_JS\1

MALDI Mass Spectrum Report

Comment 1 CL8s Date  4/25/2018
Method D:Wethods\flexControlMethods\RP_700-3500Da.par Comment 2 matrix : dithranol in acetone
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Figure S41: High-resolution mass spectrum (MALDI) of PZn-OAlk-BA.
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Figure S42: '"H NMR spectrum (400 MHz, THF-DS, 333 K) of PZn-OAIlk-PBA.
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MALDI Mass Spectrum Report

Analysis Name DAData\UMiami\0227ChLi01_hcca_dmf_rp_700-350000_J3\1

Comment 1 CL113 Date 2/27/2018
Method D:\Methods\flexContralMethods\RP_700-3500Da.par Comment 2 HCCA in DMF
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Figure S43: High-resolution mass spectrum (MALDI) of PZn-OAlk-PBA.
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Figure S45: 3C NMR spectrum (101 MHz, CDCl;) of PZn-OTEG-PBA.
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MALDI Mass Spectrum Report

Analysis Name D:\Data\UMiami\0220ChLi01_Dith_Acetone_RP_700-350010_J10\1 Comment 1 cL199 Date 4/24/2018
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Figure S46: High-resolution mass spectrum (MALDI) of PZn-OTEG-PBA.
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Figure S48: 3C NMR spectrum (101 MHz, CDCls) of PZn-OAlk-Tol.
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MALDI Mass Spectrum Report

Analysis Name D:\Data\UMiami\0426ChLi01_dithr_acetone_rp_700-35000a\0_N20\1 Comment 1 CL224 Date 4/26/2018
Method D:\Methods\lexControlMethods\RP_700-3500Da.par Comment 2 matrix : dithranol in acetone
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Figure S49: High-resolution mass spectrum (MALDI) of PZn-OAlk-Tol.
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Figure S50: '"H NMR spectrum (400 MHz, CDCl;) of PZn
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Figure S51: 3C NMR spectrum (101 MHz, CDCl;) of PZn-OTEG-Tol.
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MALDI Mass Spectrum Report

Analysis Name D:\Data\UMiami\0426ChLi02_dithr_acetone_rp_700-3500Da\0_O4\1 Comment 1 CL225
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Figure S52: High-resolution mass spectrum (MALDI) of PZn-OTEG-Tol.

T
1410

1

-
B
N

m/z

63



7. Tables S1 and S2

Table S1: Transition in cm™!' and associated oscillator strength of PZn-derived building blocks
calculated from the associated ground state absorption spectra.

Transition in cm™!
(Associated Oscillator Strength)
20°C
From Figure S1:
22041 (0.469)
22491 (0.330)
From Figure S2:
22044 (0.458)
22754 (0.325)
From Figure S3:
21905 (0.295)
22681 (0.457)

Individualized
building blocks

PZn-OAlk-PBA

PZn-OAlk-BA

PZn-OTEG-BA

Table S2: Transition in cm!' and associated oscillator strength of PZn-based supramolecular polymer
calculated from the associated ground state absorption spectra.

S lecul Transition in cm™! Transition in cm!
tprariolectiiar (Associated Oscillator Strength) | (Associated Oscillator Strength)
Polymer
100°C 0°C
From Figure S4: F;‘;TB';'S(JBJ?G?;Z
PZn-OAlk-PBA 22041 (0.367) .
22658 (0.271) 23298 (0.166)
' 24454 (0.134)
From Figure S5: F;T&T?gr%g)&
PZn-OAlk-BA 22089 (0.504) .
22754 (0.326) 23053 (0.179)
' 21945 (0.515)
From Figure S6: F;%'&';'Q(’gqe???i
PZn-OTEG-BA 22137 (0.448) .
22840 (0.223) 23135 (0.157)
' 22052 (0.025)
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