Supporting Information

Effect of end group functionalisation of small molecules featuring the fluorene-thiophene-benzothiadiazole motif as emitters in solution-processed red and orange organic light-emitting diodes⁺

V. H. K. Fell,^a N. J. Findlay,^a* B. Breig,^b C. Forbes,^b A. R. Inigo,^b J. Cameron,^a A. L. Kanibolotsky,^{ac} P. J. Skabara^a*

^a WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, Scotland

^b WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.

^c Institute of Physical-Organic Chemistry and Coal Chemistry, 02160 Kyiv, Ukraine

+ Supporting data are accessible from http://dx.doi.org/10.5525/gla.researchdata.622

Email: peter.skabara@glasgow.ac.uk, neil.findlay@glasgow.ac.uk

<u>Contents</u>

Cyclic voltammetry					
Figure S1: Oxidation/reduction CV cycle of compound 1	2				
Figure S2: Oxidation/reduction CV cycle of compound 2	3				
Figure S3: Oxidation/reduction CV cycle of compound 3					
Figure S4: Oxidation/reduction CV cycle of compound 4	5				
AFM and optical microscopy images					
Figure S5: Optical microscope images of spin-coated films of compounds 1 – 4	6				
Figure S6: AFM image of films of compounds $1 - 4$ deposited using solution with 20 mg ml ⁻¹ concentration with no annealing	7				
Figure S7: AFM image of films of compounds $1 - 4$ deposited using solution with 20 mg ml ⁻¹ concentration with annealing at 80°C	8				
OLED optimisation					
Table S1: OLED data at various annealing temperatures for compounds 1, 2 and 3	9				
NMR spectra					
Figure S8: ¹ H-NMR of compound 1	10				
Figure S9: ¹³ C-NMR of compound 1	10				
Figure S10: ¹ H-NMR of compound 2	11				
Figure S11: ¹³ C-NMR of compound 2	11				
Figure S12: ¹ H-NMR of compound 3	12				
Figure S13: ¹³ C-NMR of compound 3	12				
Figure S14 ¹ H-NMR of compound 4	13				

Figure S15: ¹³C-NMR of compound 4

13

Cyclic voltammetry

Cyclic voltammetry (CV) of Compound 1

Recorded using glassy carbon, platinum wire and Ag wire as the working, counter and pseudo-reference electrodes respectively, with $(nBu)_4 PF_6$ as the electrolyte in dichloromethane solution (0.1 M) at a scan rate of 100 mV s⁻¹. The data were referenced to the Fc/Fc⁺ redox couple, which has a HOMO of -4.8 eV.

Figure S1b: Reduction CV cycle of compound **1**.

Cyclic voltammetry (CV) of Compound 2

Recorded using glassy carbon, platinum wire and Ag wire as the working, counter and pseudo-reference electrodes respectively, with $(nBu)_4PF_6$ as the electrolyte in dichloromethane solution (0.1 M) at a scan rate of 100 mV s⁻¹. The data were referenced to the Fc/Fc⁺ redox couple, which has a HOMO of -4.8 eV.

Figure S2a: Oxidation CV cycle of compound **2**.

Cyclic voltammetry (CV) of Compound 3

Recorded using glassy carbon, platinum wire and Ag wire as the working, counter and pseudo-reference electrodes respectively, with $(nBu)_4PF_6$ as the electrolyte in dichloromethane solution (0.1 M) at a scan rate of 100 mV s⁻¹. The data were referenced to the Fc/Fc⁺ redox couple, which has a HOMO of -4.8 Ev

.Figure S3a: Oxidation CV cycle of compound **3**.

Figure S3b: Reduction CV cycle of compound **3**.

Cyclic voltammetry (CV) of Compound 4

Recorded using glassy carbon, platinum wire and Ag wire as the working, counter and pseudo-reference electrodes respectively, with $(nBu)_4PF_6$ as the electrolyte in dichloromethane solution (0.1 M) at a scan rate of 100 mV s⁻¹. The data were referenced to the Fc/Fc⁺ redox couple, which has a HOMO of -4.8 eV.

Figure S4b: Reduction CV cycle of compound **4**.

AFM and Optical Images

Figure S5: Optical microscope images of spin-coated films of compounds **1-4** All materials were spin-coated at 800 RPM from 20 mg ml⁻¹ toluene solutions.

Figure S6: AFM topography images for films of compounds (a) **1** (RMS roughness = 0.49 nm) (b) **2** (RMS roughness = 0.67 nm) (c) **3**, filtered (RMS roughness = 0.45 nm) and (d) **4** (RMS roughness = 0.74 nm), deposited using 20 mg ml⁻¹ solutions with no annealing treatment.

Figure S7: AFM topography images for films of compounds (a) **1** (RMS roughness = 0.50 nm) (b) **2** (RMS roughness = 0.52 nm) (c) **3**, filtered (RMS roughness = 0.58 nm) and (d) **4** (RMS roughness = 0.75 nm), deposited using 20 mg ml⁻¹ solutions with films annealed at 80°C for 10 minutes.

OLED optimisation

Table S1: OLED data for compounds **1**, **2**, **3** and **4** at various annealing temperatures. All devices were prepared from toluene solutions at 20 mg ml⁻¹ concentration. Average values are in parentheses.

Compound	Annealing (°C)	Turn on voltage (V) (at 100 cd m ⁻²)	Luminance (cd m ⁻²)	Current efficiency (cd A ^{.1})	Maximum EQE (%)
1	r.t	2.7 (2.8) ^a	854 @ 7 V (708 @ 7 V)ª	0.10 (0.093) ^a	0.22 (0.19)ª
	40	3.6 (4.2) ^{<i>a</i>}	440 @ 11V (382 @ 11 V) ^a	0.079 (0.072) ^a	0.17 (0.15) ^a
	60	3.8 (4.0) ^b	429 @10V (348 @ 10 V) ^b	0.072 (0.060) ^b	0.15 (0.13) ^b
	80	3.8 (4.2) ^d	245 @ 8V (199 @ 10 V) ^d	0.060 (0.045) ^d	0.12 (0.07) ^d
2	r.t	2.9 (3.0) ^d	1561 @ 8 V (1410 @ 8 V) ^d	0.15 (0.14) ^d	0.25 (0.23) ^d
	40	3.0 (3.1) ^b	1609 @ 9V (1367 @ 9V) ^b	0.19 (0.16) ^b	0.32 (0.29) ^b
	60	3.1 (3.3) ^d	1409 @ 9V (1146 @ 10V) ^d	0.17 (0.16) ^d	0.31 (0.26) ^b
	80	3.1 (3.2) ^c	1362 @ 9V (1169 @ 9V) ^c	0.16 (0.15) ^c	0.27 (0.25) ^c
	100	3.4 (3.5) ^e	1295 @ 9V (1076 @ 9V) ^e	0.15 (0.13) ^e	0.24 (0.23) ^e
3 (filtered)	r.t	2.3 (2.5) ^a	2135 @ 8.8 V (1915 @ 9 V) ^a	0.086 (0.070) ^a	0.16 (0.14)ª
	40	2.6 (2.7) ^c	1802 @ 8V (1640 @ 8V) ^c	0.091 (0.067) ^c	0.15 (0.13) ^c
	60	2.7 (2.8) ^c	1665 @ 8V (1521 @ 8V) ^c	0.080 (0.059) ^c	0.14 (0.12) ^c
	80	2.5 (2.7) ^f	1790 @ 8V (1699 @ 8V) ^f	0.086 (0.070) ^f	0.14 (0.13) ^f
4	r.t	2.5 (2.9) ^d	1498 @ 7 V (1079 @ 6.7 V) ^d	0.081 (0.064) ^d	0.17 (0.13) ^a
	40	2.4 (2.6) ^d	1339 @ 6.9 V (1168 @ 6.7 V) ^d	0.076 (0.074) ^d	0.16 (0.15) ^d
	60	2.3 (2.4) ^d	990 @ 7.6 V (715 @ 6.9 V) ^d	0.06 (0.044) ^d	0.12 (0.09) ^d
	80	2.4 (2.5) ^d	909 @ 9.5 V (713 @ 8.2 V) ^d	0.040 (0.031) ^d	0.08 (0.06) ^d

^{*a*} recorded as an average over 8 devices; ^{*b*} recorded as an average over 7 devices; ^{*c*} recorded as an average over 4 devices; ^{*d*} recorded as an average over 6 devices; ^{*e*} recorded as an average over 5 devices; ^{*f*} recorded as an average over 3 devices. The best turn on voltages were achieved with the devices 'annealed' at room temperature (r.t).

NMR spectra

Figure S8: ¹H-NMR of compound $\mathbf{1}$ in CDCl₃.

Figure S9: ¹³C-NMR of compound **1** in CDCl₃.

Figure S10: ¹H-NMR of compound **2** in CDCl₃.

Figure S11: ¹³C-NMR of compound **2** in CDCl₃.

Figure S12: ¹H-NMR of compound **3** in $CDCl_3$.

Figure S14: ¹H-NMR of compound **4** in CDCl₃.

Figure S15: ¹³C-NMR of compound **4** in CDCl₃.