Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Construction of SnO₂/Co₃Sn₂@C and SnO₂/Co₃Sn₂@Air@C hierarchical

heterostructures for efficient electromagnetic wave absorption

Suyun Wang, Shisi Peng, Suting Zhong, Wei Jiang*

National Special Superfine Powder Engineering Technology Research Center,

Nanjing University of Science and Technology, 210094, Nanjing, China.

* Corresponding author E-mail: <u>superfine_jw@126.com</u>; Tel: +86-025-8431-5942.

S1. Electromagnetic Wave Absorption Measurement

Composites used for electromagnetic wave absorption measurement were prepared by mixing samples with paraffin at a mass ratio of 3:7, respectively. Then the mixtures were compressed into cylindrical specimens with an inner diameter of 3.04 mm, outer diameter of 7 mm, and the thickness of 2 mm. The complex permittivity ε_r ($\varepsilon_r = \varepsilon_r' - j\varepsilon_r''$) and permeability μ_r ($\mu_r = \mu_r' - j\mu_r''$) of the composites were measured by an Agilent E8363A vector network analyzer in the frequency range of 2-18 GHz.

Figure S1. TGA curves of $CoSn(OH)_6(a)$ and $H_2BDC(b)$ which were tested in air from 50°C to 400°C.

Figure S2. XRD pattern of the hollow CoSnO₃@MOF and H-CoSnO₃@MOF nanocubes.

Figure S3. Size distribution of CoSn(OH)₆ particles.

Figure S4. Real part (μ ') and imaginary part (μ '') of permeability for SnO₂/Co₃Sn₂@C(a) and SnO₂/Co₃Sn₂@Air@C(b)

Figure S5. XPS survey spectrum of O 1s region of SnO₂/Co₃Sn₂@C.

Figure S6. Calculated RL curves of SnO₂/Co₃Sn₂@C and SnO₂/Co₃Sn₂@Air@C with the thickness of 1.6 -2.0 mm.

Figure S7. Attention constant (α) of SnO₂/Co₃Sn₂@C and SnO₂/Co₃Sn₂@Air@C

Figure S8. N₂ adsorption-desorption isotherms (a) and pore size distributions (b) of $SnO_2/Co_3Sn_2@C$ and $SnO_2/Co_3Sn_2@Air@C$ hybrids.