Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Phase Polymorphism and Electronic Structures of TeSe₂

Tekalign Terfa Debela^a and Hong Seok Kang^{*b}

^aInstitute for Application of Advanced Materials, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea

^bDepartment of Nano and Advanced Materials, College of Engineering, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea

*Corresponding Author: <u>hsk@jj.ac.kr;jjhskang@gmail.com</u>

Contents

I. Supporting Tables

Table S1. Calculated structural properties for $M_H \rightarrow H_{\gamma T}$ and $M_H \rightarrow M_{\beta \alpha}$ phase transformations.

II. Supporting Figures

Figure S1. Chemical structure of $TeSe_2$ in the $H_{\epsilon H}$ phase.

Figure S2. Phase transformations between $M_{\beta\alpha}$ and $M^{L}_{\beta\alpha}$ under shear stress.

Figure S3. Charge density plots of $H_{\gamma T}$ phase near the fermi level.

Figure S4. Charge density plots of M_H phase near the fermi level.

Figure S5. The chemical structure and MBJLDA +SOC band structure of bulk $TeSe_2$ in the M_H and M^L_H phases.

Figure S6. Charge density plots of $M_{\beta\alpha}$ phase near the fermi level.

Figure S7. The chemical structure and MBJLDA +SOC band structure of bulk TeSe₂ in the $M_{\beta\alpha}$ and $M_{\beta\alpha}^{L}$ phases.

Phase	$l_{\text{Te-Te}}^{1}$,	$l_{\text{Se-Se}}^{1}$,	$l_{\text{Te-Se}}^{1}$,
	$l_{\rm Te-Te}^2$	$l_{\rm Se-Se}^2$	$l_{\rm Te-Se}^2$
M	4.17	2.49	2.66
TATH	4.25	3.35	3.32
$H_{\nu'T}$	4.00	3.54	2.80
·	3.86	4.00	2.83
Нут	3.99	3.50	2.84
γ1	3.99	3.99	2.84
	4.05	2.52	2.70
$M_{\beta\alpha'}$	4.04	3.35	3.24
$M_{\beta lpha}$	4.16	2.49	2.66
	4.24	3.35	3.21

Table S1. Calculated structural properties for $M_H \rightarrow H_{\gamma T}$ and $M_H \rightarrow M_{\beta \alpha}$ phase transformations. Lengths are in units of Å.

Figure S1. Chemical structure of $TeSe_2$ in the $H_{\epsilon H}$ phase in (a) top and (b) side views. The red and blue balls represent Te and Se atoms, respectively.

Figure S2. Phase transformations between $M_{\beta\alpha}$ and $M^L_{\beta\alpha}$ under shear stress, where $M^L_{\beta\alpha}$ is a mirror image of $M_{\beta\alpha}$.

Figure S3. Two different views of the charge density plots of the valence band in the $H_{\gamma T}$ phase at K' ($\Gamma \rightarrow$ K) (a), A' (A \rightarrow L) (b) and A" (A \rightarrow H) (c) points. Similar plots are also shown for the conduction band at the A point (d). The charge density visualization is shown with isosurface of 0.002 eÅ⁻³. The red and blue balls represent Te and Se atoms, respectively.

Figure S4. Two different views of the charge density plots of the valence band in M_H phase at Z (a), D' (B \rightarrow D) (b), and E (c) points. Similar plots are also shown for the conduction band at at Z' (Z \rightarrow Γ) (d) and D' (B \rightarrow D) (e) points. The charge density visualization is shown with isosurface of 0.0003 eÅ⁻³. The red and blue balls represent Te and Se atoms, respectively.

Figure S5. The chemical structure and MBJLDA +SOC band structure of bulk $TeSe_2$ in the M_H (a) and M^L_H (b) phases. The red and blue lines in band structures represent spin up and down states, respectively.

Figure S6. Two different views of the charge density plot of of the valence band in the $M_{\beta\alpha}$ at $\Gamma' (\Gamma \rightarrow Y)$ (a) and $Z'' (\Gamma \rightarrow Z)$ (b) points. Similar plots are also shown for the conduction band at $\Gamma'' (\Gamma \rightarrow Y)$ (c) and $Z''' (\Gamma \rightarrow Z)$ (d) points. The charge density visualization is shown with isosurface of 0.0003 eÅ⁻³. The red and blue balls represent Te and Se atoms, respectively.

Figure S7. The chemical structure and MBJLDA +SOC band structure of bulk TeSe₂ in the $M_{\beta\alpha}(a)$ and $M^{L}_{\beta\alpha}(b)$ phases. The red and blue lines in band structures represent spin up and down states, respectively.