Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supporting Information for

High-Entropy Alloy Superconductors on an α-Mn lattice

Karoline Stolze, F. Alex Cevallos, Tai Kong and Robert J. Cava

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA

*kstolze@princeton.edu

SEM images of (HfTaWPt)_{0.40}[Re]_{0.60}

Figure S1. a) SEM image of the smooth surface of an as-cast, sanded (HfTaWPt)_{0.40}[Re]_{0.60} sample; b) EDX spectrum of an area, emphasized in a), revealing all five elements present with stoichiometry in agreement with the initial composition.

0 2 4 6 8 10 12 14 16 18 20 Full Scale 9839 cts Cursor: 4.001 (348 cts) keV

Figure S2. a) SEM image of the dendritic surface of a decomposed (HfTaWPt)_{0.40}[Re]_{0.60} sample; b) SEM image with increased magnification of a sub-microscale dendrite; c) EDX spectrum of a selected area, emphasized in b), revealing a Hf/Pt-rich composition.

Heat capacity parameterization

The temperature dependent specific heat capacity can be expressed by the equation

$$\frac{c(T)}{T} = \gamma + \beta T^2 \tag{1},$$

where γT describes the electronic and βT^3 the phonon contribution to the heat capacity. The Sommerfeld parameter γ , and β , can be determined by the linear fit of the C/T vs. T^2 of the normal-state data collected with an applied magnetic field of 9 T (Figure S3a–c). The Debye temperature Θ_D was calculated using β according to the equation

$$\Theta_D = \left(\frac{12\pi^4}{5\beta} nR\right)^{\frac{1}{3}} \tag{2},$$

where the number of atoms per formula unit is n = 1 and the gas constant R = 8.314 Jmol⁻¹K⁻¹. The Debye temperatures for (ZrNb)_{0.10}[MoReRu]_{0.90}, (HfTaWIr)_{0.40}[Re]_{0.60}, and (HfTaWPt)_{0.40}[Re]_{0.60} amount to 339 K, 317 K, and 252 K, respectively. The heat capacity parameterization for all three HEAs are summarized in Table S1.

Resistivity and upper critical fields

Figure S3. C/T vs. T^2 for a) (ZrNb)_{0.10}[MoReRu]_{0.90}, b) (HfTaWIr)_{0.40}[Re]_{0.60}, and c) (HfTaWPt)_{0.40}[Re]_{0.60} measured in $\mu_0 H = 9$ T (normal state) fitted to $C/T = \gamma + \beta T^2$ (red line).

Figure S4. Magnetic field dependence of the superconducting transition for a) (ZrNb)_{0.10}[MoReRu]_{0.90}, b) (HfTaWIr)_{0.40}[Re]_{0.60}, and c) (HfTaWPt)_{0.40}[Re]_{0.60} for $0 \text{ T} \le \mu_0 H \le 7.5 \text{ T}$, $0 \text{ T} \le \mu_0 H \le 4.5 \text{ T}$, and $0 \text{ T} \le \mu_0 H \le 6 \text{ T}$ respectively; 50%-criterion depicted as black dashed lines.

Figure S5. Temperature dependent upper critical fields $\mu_0 H_{c2}(T)$ of $(ZrNb)_{0.10}$ [MoReRu]_0.90, (HfTaWIr)_{0.40}[Re]_{0.60}, and (HfTaWPt)_{0.40}[Re]_{0.60} HEAs. The open circles are the 50%-values obtained from $\rho(T)$ plots at different applied fields; the lines show the linear fits used to determine $\mu_0 H_{c2}(0)$ according to the WHH approximation.

The linear regression gave very good fits to all experimental data (R^2 : 0.9997, 0.9991, and 0.9994 for (ZrNb)_{0.10}[MoReRu]_{0.90}, (HfTaWIr)_{0.40}[Re]_{0.60}, and (HfTaWPt)_{0.40}[Re]_{0.60}, respectively). The new α -Mn-type HEA (ZrNb)_{0.10}[MoReRu]_{0.90} exhibits the highest $T_c \approx 5.3$ K as well as the highest zero temperature upper critical field $\mu_0 H_{c2}(0) = 7.86$ T among the materials studied here.

Table S1. Overview of the superconducting parameters obtained from susceptibility, specific heat and resistivity measurements for the (ZrNb)_{0.10}[MoReRu]_{0.90}, (HfTaWIr)_{0.40}[Re]_{0.60}, and (HfTaWPt)_{0.40}[Re]_{0.60} HEA superconductors.

Parameter	(ZrNb)0.10[MoReRu]0.90	(HfTaWIr)0.40[Re]0.60	(HfTaWPt)0.40[Re]0.60
T _{c, magnetization} (K)	5.3	4.0	4.4
Tc, specific heat (K)	5.3	4.0	4.4
Tc, resistivity (K)	5.74	3.90	4.43
γ (mJ·mol ⁻¹ ·K ⁻²)	3.80(1)	3.10(1)	2.85(1)
β (mJ·mol ⁻¹ ·K ⁻⁴)	0.050(1)	0.061(1)	0.121(1)
$\Theta_{\mathrm{D}}\left(\mathrm{K} ight)$	339	317	252
$\Delta C/\gamma T_{ m c}$	1.53	1.46	1.46
<i>ρ</i> _{300K} (μΩ·cm)	105	536	591
RRR	1.02	1.01	1.01
$\mu_0 H_{c2}(0)$ (T)	7.86	4.64	5.90