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SEM images of (HfTaWPt)0.40[Re]0.60 

 

Figure S1. a) SEM image of the smooth surface of an as-cast, sanded (HfTaWPt)0.40[Re]0.60 
sample; b) EDX spectrum of an area, emphasized in a), revealing all five elements present with 
stoichiometry in agreement with the initial composition. 
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Figure S2. a) SEM image of the dendritic surface of a decomposed (HfTaWPt)0.40[Re]0.60 
sample; b) SEM image with increased magnification of a sub-microscale dendrite; c) EDX 
spectrum of a selected area, emphasized in b), revealing a Hf/Pt-rich composition. 
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Heat capacity parameterization 

The temperature dependent specific heat capacity can be expressed by the equation 
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where ꞏT describes the electronic and ꞏT3 the phonon contribution to the heat capacity. The 

Sommerfeld parameter , and  can be determined by the linear fit of the C/T vs. T2 of the 

normal-state data collected with an applied magnetic field of 9 T (Figure S3a–c). The Debye 

temperature D was calculated using  according to the equation 
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where the number of atoms per formula unit is n = 1 and the gas constant R = 8.314 Jmol-1K-1. 

The Debye temperatures for (ZrNb)0.10[MoReRu]0.90, (HfTaWIr)0.40[Re]0.60, and 

(HfTaWPt)0.40[Re]0.60 amount to 339 K, 317 K, and 252 K, respectively. The heat capacity 

parameterization for all three HEAs are summarized in Table S1. 
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Resistivity and upper critical fields 

 

Figure S3. C/T vs. T2 for a) (ZrNb)0.10[MoReRu]0.90, b) (HfTaWIr)0.40[Re]0.60, and c) 

(HfTaWPt)0.40[Re]0.60 measured in µ0H = 9 T (normal state) fitted to C/T = γ + β T2 (red line). 
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Figure S4. Magnetic field dependence of the superconducting transition for a) 

(ZrNb)0.10[MoReRu]0.90, b) (HfTaWIr)0.40[Re]0.60, and c) (HfTaWPt)0.40[Re]0.60 for 0 T ≤ µ0H 

≤ 7.5 T, 0 T ≤ µ0H ≤ 4.5 T, and 0 T ≤ µ0H ≤ 6 T respectively; 50%-criterion depicted as black 

dashed lines. 
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Figure S5. Temperature dependent upper critical fields µ0Hc2(T) of (ZrNb)0.10[MoReRu]0.90, 

(HfTaWIr)0.40[Re]0.60, and (HfTaWPt)0.40[Re]0.60 HEAs. The open circles are the 50%-values 

obtained from ρ(T) plots at different applied fields; the lines show the linear fits used to 

determine µ0Hc2(0) according to the WHH approximation. 

The linear regression gave very good fits to all experimental data (R2: 0.9997, 0.9991, and 

0.9994 for (ZrNb)0.10[MoReRu]0.90, (HfTaWIr)0.40[Re]0.60, and (HfTaWPt)0.40[Re]0.60, 

respectively). The new -Mn-type HEA (ZrNb)0.10[MoReRu]0.90 exhibits the highest Tc ≈ 5.3 

K as well as the highest zero temperature upper critical field µ0Hc2(0) = 7.86 T among the 

materials studied here.  
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Table S1. Overview of the superconducting parameters obtained from susceptibility, specific 

heat and resistivity measurements for the (ZrNb)0.10[MoReRu]0.90, (HfTaWIr)0.40[Re]0.60, and 

(HfTaWPt)0.40[Re]0.60 HEA superconductors. 

Parameter (ZrNb)0.10[MoReRu]0.90 (HfTaWIr)0.40[Re]0.60 (HfTaWPt)0.40[Re]0.60 

Tc, magnetization (K) 5.3 4.0 4.4

Tc, specific heat (K) 5.3 4.0 4.4

Tc, resistivity (K) 5.74 3.90 4.43 

 (mJꞏmol-1ꞏK-2) 3.80(1) 3.10(1) 2.85(1) 

 (mJꞏmol-1ꞏK-4) 0.050(1) 0.061(1) 0.121(1) 

D (K) 339 317 252 

ΔC/ꞏTc 1.53 1.46 1.46 

ρ300K (μΩꞏcm) 105 536 591

RRR 1.02 1.01 1.01 

µ0Hc2(0) (T) 7.86 4.64 5.90 

 


