Supplementary information

Low lattice thermal conductivity and promising thermoelectric figure of merit of Zintl type TlInTe₂

Guangqian Ding^a, Junjie He^a, Zhenxiang Cheng^{*b}, Xiaotian Wang^{*c} and Shuo Li^d

^aInstitute for Quantum Information and Spintronics (IQIS), School of Science, Chongqing University of Posts and Telecommunications, Chongqing, 400065, People's Republic of China.

^bInstitute for Superconducting & Electronic Materials (ISEM), University of Wollongong, Wollongong, 2500, Australia.

^cSchool of Physical Science and Technology, Southwest University, Chongqing, 400715, People's Republic of China.

^dDepartment of Physical and Macromolecular Chemistry, Faculty of Science, Charles, University in Prague, 128 43 Prague 2, Czech Republic.

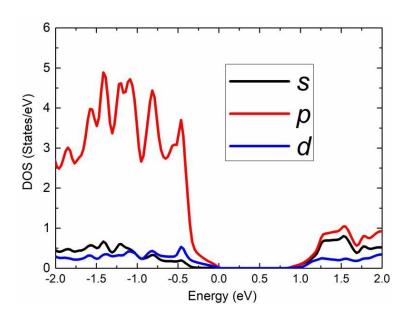


Fig. S1. Contribution of different atomic state to the density of states in $TIInTe_2$.

Table S1. Calculated elastic constant *C*, carrier effective mass m^* , deformation potential (DP) constant *E*, and relaxation time τ of TIInTe₂ at room temperature.

Carriers	$C (eV/Å^3)$	$m^{*}(m_{e})$	E(eV)	$\tau(10^{-14}\mathrm{s})$
Hole	3.45	0.2	-34.05	18
Electron	3.45	0.47	-26.78	9.8

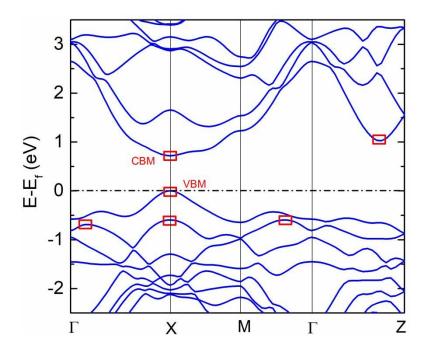


Fig. S2. Calculated band structure of TlGaTe₂.

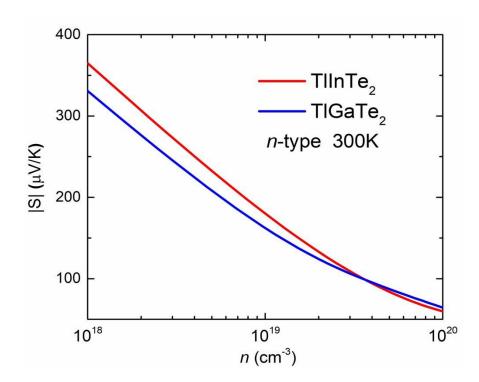


Fig. S3. Comparison of *n*-type Seebeck coefficient between TlInTe₂ and TlGaTe₂ at

300K.