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Fig. S1 Rietveld refinement for the XRD patterns of the ceramics.
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Rb 

x=0 100.0% 5.6476 3.9832 5.6574 3.9969 3.9832 90.099 0.0% - - 8.75%

x=0.25 35.3% 5.6439 3.9819 5.6520 3.9937 3.9819 90.082 65.7% 3.9793 4.0048 9.08%

x=0.4 29.6% 5.6448 3.9827 5.6517 3.9939 3.9827 90.070 70.4% 3.9814 4.0061 8.96%

x=0.5 21.9% 5.6467 3.9803 5.6534 3.9951 3.9803 90.068 78.1% 3.9794 4.0055 8.56%
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Fig. S2 d33 as a function of Tc for KNN-based piezoceramics featured with O-T phase transition.1-4

Fig.S3 Relationship of In(1/εr−1/εm) versus In(T−Tm) for the LKNNS-6.5(xBNZ- (1-x)BZ)-

1wt%MnO2 ceramics, γ values inserted suggests their diffuseness according to the modified Curie 

Weiss law. 
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Fig.S4 The electric field dependence of d33 for the x=0.25 sample at various temperatures.

Fig. S5 (a) The in-plane PFM phase image of the x=0.25 specimen. Local representative 

phase (b) and amplitude (c) hysteresis loops measured at different locations a, b and c of 

the x=0.25 specimen as shown in the PFM phase image.

To further explore the local response to the external excitations at 

different local regions, the study of the local switching spectroscopy 
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piezoresponse force microscopy (SS-PFM) was performed. Local phase and 

amplitude hysteresis loops for the areas marked with a,b and c in PFM 

phase image of Figure S5 were obtained by applying a triangular signal 

voltage ranging from −40 to 40 V superimposed with an AC signal of 1 V. 

To make the results trustworthy, the measurements are conducted multiple 

times. The representative and reliable curves for the various areas are 

presented in Figure S5(b) and Figure S5(c), respectively. Sufficient 

polarization switching behavior could be perceived as 180° contrast is 

observed in all the phase curves. All the piezoresponse curves reveal a 

butterfly shaped feature but different areas exhibit the different amplitudes 

of the piezoresponse under zero and the maximum electrical field. These 

results indicate that the formation of multi-scale structural heterogeneities 

results in different local microscopic responses to the external excitations in 

the KNN-based ceramics.
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Fig.S6 (a) Sketch diagram of thermodynamic analysis of the local phase transition point shifts due 

to the local internal stress, the dash lines and solid lines denote the Gibbs free energy of the local 

region with low and high internal stress, respectively. (b) The schematic for the sharply defined 

temperature point into a broadened temperature range.

As the temperature increases, the tetragonal phase becomes more 

thermodynamically stable than orthorhombic one since the Gibbs free 

energy of the tetragonal phase becomes lower than that of orthorhombic 
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one. The Gibbs free energy (G) is defined as the following thermodynamics 

equation: G = U + PV – TS. where U, P, V, T and S denotes internal energy, 

pressure, volume, temperature and entropy, respectively. It is obvious that 

the increase of the pressure or the decrease of temperature can cause the 

increase of Gibbs free energy (G). The Gibbs free energy for a local region 

varies with the local internal stress. As shown in Fig. S6(a), the phase 

transition temperature would increases with the pressure. The local region 

with a different internal stress would exhibit a different phase transition 

point. As shown in Fig. S6(b), the sharply defined phase transition 

temperature point changes into a broadened phase transition temperature 

range.

  Fig. S7 The supposed distribution for the number of the regions with the TO-T

The localized phase transition points in complex ferroelectric 
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ceramics should fluctuate in a certain range and the number of the regions 

with the TO-T decreases when the TO-T deviates from the average O-T phase 

transition point. In this case, as shown in Figure S7, the distribution for the 

number of the regions with the TO-T is assumed to be governed by a normal 

distribution around a mean value of the O-T phase transition point, Tm, with 

a width of the distribution δ and the TO-T is considered to range from Tm 

minus three times the width of the normal distribution to Tm plus three 

times the width of the normal distribution. Thus, the distribution is then 

given by

𝑁𝑢𝑚𝑏𝑒𝑟(𝑇𝑂 ‒ 𝑇) = 𝑁
1

𝛿 2𝜋
exp ( ‒

(𝑇𝑂 ‒ 𝑇 ‒ 𝑇𝑚)2

2𝛿2 ) ,         𝑇𝑚 ‒  3𝛿 ≤ 𝑇𝑂 ‒ 𝑇 ≤    𝑇𝑚 + 3𝛿   

where N is a matched constant. Thus, the fraction of the regions with a 

TO-T decrease when the TO-T deviates from the mean O-T phase transition 

point Tm, the distribution of which can be roughly described by 

approximately normal distribution:

 

𝑓(𝑇𝑂 ‒ 𝑇) = 1
𝛿 2𝜋

exp ( ‒
(𝑇𝑂 ‒ 𝑇 ‒ 𝑇𝑚)2

2𝛿2 )/

3𝛿 + 𝑇𝑚

∫
‒ 3𝛿 + 𝑇𝑚

1
𝛿 2𝜋

 

exp ( ‒
(𝑇𝑂 ‒ 𝑇 ‒ 𝑇𝑚)2

2𝛿2 )𝑑𝑇𝑂 ‒ 𝑇
 

Where Tm represents the mean value of TO-T and δ is the coefficient 

signifying the diffused level of phase transition.

For simplicity, we first consider an extreme case in a local region, 

where the local response r at a particular temperature T is described as 

follows.
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 𝑟(𝑇，𝑇𝑂 ‒ 𝑇) = { 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝐴 ，𝑖𝑓 𝑇 = 𝑇𝑂 ‒ 𝑇

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝐵，𝑖𝑓 𝑇 ≠ 𝑇𝑂 ‒ 𝑇 �
Where constant A denotes the response level at the temperature TO-T, 

and constant B is the response level at any other temperatures. The macro 

piezoelectric performance can be determined by statistically averaging of 

the micro piezoelectric performance. Thus, the macro piezoelectric 

performance R at a particular temperature T can be calculated as follows.

𝑅(𝑇,𝑇𝑚,𝛿) =

3𝛿 + 𝑇𝑚

∫
- 3𝛿 + 𝑇𝑚

 
𝑟(𝑇，𝑇𝑂 ‒ 𝑇) 𝑓(𝑇𝑂 ‒ 𝑇,𝑇𝑚,𝛿) 𝑑𝑇𝑂 ‒ 𝑇

3𝛿 + 𝑇𝑚

∫
- 3𝛿 + 𝑇𝑚

 
𝑓(𝑇𝑂 ‒ 𝑇,𝑇𝑚,𝛿) 𝑑𝑇𝑂 ‒ 𝑇

Since f (TO-T,Tm,δ) is an approximately normal distribution with

 

3𝛿 + 𝑇𝑚

∫
- 3𝛿 + 𝑇𝑚

 
𝑓(𝑇𝑂 ‒ 𝑇,𝑇𝑎,𝛿) 𝑑𝑇𝑂 ‒ 𝑇 = 1  

Thus, 

𝑅(𝑇,𝑇𝑎,𝛿) = ( 

- 3𝛿 + 𝑇𝑚

∫
3𝛿 + 𝑇𝑚

𝐵𝑓(𝑇𝑂 ‒ 𝑇,𝑇𝑂 ‒ 𝑇 ≠ 𝑇) 𝑑𝑇𝑂 ‒ 𝑇 +

- 3𝛿 + 𝑇𝑚

∫
3𝛿 + 𝑇𝑚

𝐴𝑓(𝑇𝑂 ‒ 𝑇,𝑇𝑂 ‒ 𝑇 ≠ 𝑇) 𝑑𝑇𝑂 ‒ 𝑇 

                      = {
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝐵 ，𝑖𝑓 𝑇 > 3𝛿 + 𝑇𝑚 𝑜𝑟 𝑇 < ‒ 3𝛿 + 𝑇𝑚

𝐵 +

𝐶(𝐴 ‒ 𝐵)
𝑑𝑇𝑂 ‒ 𝑇

𝛿 2𝜋
exp ( ‒

(𝑇 ‒ 𝑇𝑚)2

2𝛿2 )
3𝛿 + 𝑇𝑚

∫
- 3𝛿 + 𝑇𝑚

 
1

𝛿 2𝜋
exp ( ‒

(𝑇𝑂 ‒ 𝑇 ‒ 𝑇𝑚)2

2𝛿2 )𝑑𝑇𝑂 ‒ 𝑇

，𝑖𝑓   3𝛿 + 𝑇𝑚 ≤  𝑇 ≤ 3𝛿 + 𝑇𝑚�
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According to the derived R(T)-T expression of the correlation function, 

we can deduce that the less intensive change of the performance around the 

average phase transition point Tm is anticipated in the ceramics with a 

higher δ. 

To demonstrate general evolution of the macro piezoelectric 

performance and the acompanyed thermal stability around the phase 

transition point, the common temperature-dependent local response arround 

the phase transition point TO-T is assumed to have the following 

charateristic. With the temperature T approaching TO-T, the local response 

and the rate of the local response change becomes larger and larger since 

the change of the phase structure is most intense at TO-T. Thus, the local 

response at a certain temperature T in a local region with the phase 

transition point TO-T , r(T,TO-T), can be described as follows.

      

  𝑟(𝑇，𝑇𝑂 ‒ 𝑇) = { 
𝑑𝑟
𝑑𝑇

|𝑇 ≥ 0，
𝑑2𝑟

𝑑𝑇2
≥ 0，𝑖𝑓 𝑇 < 𝑇𝑂 ‒ 𝑇

𝑑𝑟
𝑑𝑇

|𝑇 ≤ 0，
𝑑2𝑟

𝑑𝑇2
≥ 0，𝑖𝑓 𝑇 > 𝑇𝑂 ‒ 𝑇

𝑟|𝑇 ≠ 𝑇𝑂 ‒ 𝑇
< 𝑟|𝑇 = 𝑇𝑂 ‒ 𝑇

  
�

Here, it is reasonable to assume that the local region with different TO-T 

can exhibit the similar temperature dependence of the local response except 

the different TO-T if the TO-T doesn’t changes hugely , which can be 

described by the relationship:

r(T，TO-T) = r(T+ΔT，TO-T+ΔT ) , ΔT < ΔTm
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The function R(T) describing the relationship between macro 

performance and temperature could be written as

 

𝑅(𝑇) =

𝑇𝑚 + 3 𝛿

∫
𝑇𝑚 ‒ 3 𝛿

 
𝑟(𝑇𝑚,𝑇𝑂 ‒ 𝑇) 𝑓(𝑇𝑚,𝑇𝑂 ‒ 𝑇) 𝑑𝑇𝑂 ‒ 𝑇

𝑇𝑚 + 3 𝛿

∫
𝑇𝑚 ‒ 3 𝛿

 
𝑟(𝑇𝑚,𝑇𝑂 ‒ 𝑇)  𝑑𝑇𝑂 ‒ 𝑇

To evaluate the fluctuation of the macro performance around the 

phase transition point, we can consider how the variation of the macro 

performance, ΔR , in a temperature range deviating from Tm ,ΔT, changes. 

ΔR can be written as 

 Δ𝑅 = 𝑅(𝑇𝑚) ‒ 𝑅(𝑇𝑚 + Δ𝑇)

=

(

𝑇𝑚 + 3 𝛿

∫
𝑇𝑚 ‒ 3 𝛿

 

𝑟(𝑇𝑚,𝑇𝑂 ‒ 𝑇) 𝑓(𝑇𝑂 ‒ 𝑇,𝑇𝑚) 𝑑𝑇𝑂 ‒ 𝑇 ‒

𝑇𝑚 + 3 𝛿

∫
𝑇𝑚 ‒ 3 𝛿

 
𝑟(𝑇𝑚 + Δ𝑇,𝑇𝑂 ‒ 𝑇) 𝑓(𝑇𝑂 ‒ 𝑇,𝑇𝑚) 𝑑𝑇𝑂 ‒ 𝑇)

+ 3 𝛿

∫
‒ 3 𝛿

 
 𝑓(𝑇𝑂 ‒ 𝑇,𝑇𝑚) 𝑑𝑇𝑂 ‒ 𝑇

     It is reasonable to consider that δ is not too large in well fabricated 

ceramics to help maintain a good performance. For simplicity, we consider 

the condition that ΔT is larger than three times the width of the normal 

distribution δ. 

     It's easy to prove that R(Tm) decreases while R(Tm+ΔT ) increases as 

δ increases as follows. 
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𝑇𝑚 + 3 𝛿

∫
𝑇𝑚 ‒ 3 𝛿

 
 𝑓(𝑇𝑂 ‒ 𝑇,𝑇𝑚) 𝑑𝑇𝑂 ‒ 𝑇

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  𝐴 ≈ 0.9974  > 0

With the condition ξ=（Tm -TO-T）/ δ and r(T，TO-T) = r(T+ΔT，TO-T+ΔT )

=

‒ 3 

∫
3 

 
𝑟(𝑇𝑚,𝑇𝑚 ‒ 𝛿𝜉) 𝑓(𝑇𝑚,𝑇𝑚 ‒ 𝛿𝜉) 𝑑(𝑇𝑚 ‒ 𝛿𝜉)

𝐴

  =
1
𝐴

3 

∫
‒ 3 

 
𝑟(𝛿𝜉 ,0) 𝑓(𝑇𝑚,𝑇𝑚 ‒ 𝛿𝜉)𝛿 𝑑𝜉 =  

1
𝐴 2𝜋

3 

∫
‒ 3 

 
𝑟(𝛿𝜉 ,0) 𝑒𝑥𝑝 ‒ 𝜉2

𝑑𝜉 

    
𝑑𝑅
𝑑𝛿

|𝑇𝑚
=

1
𝐴 2𝜋

3 

∫
‒ 3 

 

𝜉
𝑑𝑟(𝛿𝜉 ,0) 

𝑑𝑇
 𝑒𝑥𝑝 ‒ 𝜉2

𝑑𝜉 

=
1

𝐴 2𝜋

0 ‒  

∫
‒ 3 

 

𝛿
𝑑𝑟(𝛿𝜉 ,0) 

𝑑𝑇
 𝑒𝑥𝑝 ‒ 𝜉2

𝑑𝜉 +
1

𝐴 2𝜋

3 

∫
0 +

 

𝛿
𝑑𝑟(𝛿𝜉 ,0) 

𝑑(𝛿𝜉 )
 𝑒𝑥𝑝 ‒ 𝜉2

𝑑𝜉 

With the condition δξ < 0 ,   while   δξ>0 ,  

𝑑𝑟(𝛿𝜉 ,0) 
𝑑𝑇

≥ 0  

   

𝑑𝑟(𝛿𝜉 ,0) 
𝑑𝑇

≤ 0  

Thus 
 
𝑑𝑅
𝑑𝛿

|𝑇𝑚
< 0 ,𝛿 > 0

Similarly,

 
𝑑𝑅
𝑑𝛿

|Δ𝑇 =
1

𝐴 2𝜋

0 ‒  

∫
‒ 3 

 

𝛿
𝑑𝑟(𝛿𝜉 + Δ𝑇 ,0) 

𝑑𝑇
 𝑒𝑥𝑝 ‒ 𝜉2

𝑑𝜉 +
1

𝐴 2𝜋

3 

∫
0 +

 

𝛿
𝑑𝑟(𝛿𝜉 + Δ𝑇 ,0) 

𝑑𝑇
 𝑒𝑥𝑝 ‒ 𝜉2

𝑑𝜉

 

=  
1

𝐴 2𝜋

3 

∫
0 +

 

𝛿(
𝑑𝑟(𝛿𝜉 + Δ𝑇 ,0) 

𝑑𝑇
‒  

𝑑𝑟( ‒ 𝛿𝜉 + Δ𝑇 ,0) 
𝑑𝑇

)𝑒𝑥𝑝 ‒ 𝜉2
𝑑𝜉 
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With the condition ΔT>0 , -3δξ+ΔT >0 , 

𝑑2𝑟

𝑑𝑇2
|𝑇 ≥ 0

𝑑𝑟(𝛿𝜉 + Δ𝑇 ,0) 
𝑑𝑇

≥  
𝑑𝑟( ‒ 𝛿𝜉 + Δ𝑇 ,0) 

𝑑𝑇

Thus， 
 
𝑑𝑅
𝑑𝛿

|𝑇𝑚 + Δ𝑇 > 0 ,𝛿 > 0

 
𝑑Δ𝑅
𝑑𝛿

|Δ𝑇 =  
𝑑𝑅
𝑑𝛿

|𝑇𝑚
‒  

𝑑𝑅
𝑑𝛿

|𝑇𝑚 + Δ𝑇 < 0 ,𝛿 > 0

Thus, ΔR decreases as δ increases. δ can be affected by various factors 

such as chemical inhomogeneity, non-uniform internal stress and lattice 

disorder due to small free energy changes.5, 6 This analysis presented here 

might demonstrate the general feature in diffused phase transition, where 

the fluctuation of the piezoelectric performance around the phase transition 

increases as the diffused degree increases, thereby deepening our 

understanding of the thermal stability of the piezoelectric performance 

around the diffused transition in KNN-based ceramics. In most other cases, 

this relationship would appear to be intuitively right. It is reasonable to say 

that a higher lattice disorder degree can help to depress the fluctuation 

around the phase transition as δ increases with the higher lattice disorder 

degree. 

Based on the free-energy expressions from Landau-Ginzburg-

Devonshire (LGD) model, the free energy of each region RTO-T can be 

written as a power series of the order parameter θ：
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𝐹𝑅𝑇𝑂 ‒ 𝑇
=  𝐹0𝑅𝑇𝑂 ‒ 𝑇

+ ∑
𝑛

1
𝑛

𝛼𝑛𝑅𝑇𝑂 ‒ 𝑇
𝜃 𝑛

𝑅𝑇𝑂 ‒ 𝑇

Where  is the order parameter while  is a function of 
𝜃 𝑛

𝑅𝑇𝑂 ‒ 𝑇
𝛼𝑛𝑅𝑇𝑂 ‒ 𝑇

temperature and varies with region .The spatial distribution of these 
𝑅𝑇𝑂 ‒ 𝑇

regions can be very complicated, resulting in inenarrable coherent coupling 

behavior at the interfaces between various regions. For simplicity, the 

system is assumed to be a finite model where each region independent 

thermodynamic behavior since the coupling behavior between these regions 

is neglected. 7, 8 Besides, the same order parameter θ can be chosen as the 

order parameter for each region since these regions undergo the same 

change of the crystal symmetry. The free energy of a heterogeneous system 

could be described as follows:

  
𝐹 = ∫( 𝐹0𝑅𝑇𝑂 ‒ 𝑇

+ ∑
𝑛

1
𝑛

𝛼𝑛𝑅𝑇𝑂 ‒ 𝑇
𝜃𝑛) 𝑓(𝑇𝑂 ‒ 𝑇)𝑑𝑇𝑂 ‒ 𝑇

It is reasonable to assume that the local regions with different TO-T can 

exhibit a similar temperature dependence of potential well except for the 

different TO-T if the TO-T does not change colossally. The flatness of θ-F 

curves can be evaluated by the second derivative of order 

parameter versus the free energy, .  =α2 (T), which and the 

𝑑2𝐹

𝑑𝜃2

𝑑2𝐹

𝑑𝜃2
|𝜃 = 0

change rate of which becomes larger and larger as T approaches TO-T since 

the change of the phase structure is most intense at TO-T.
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𝛼2(𝑇，𝑇𝑂 ‒ 𝑇) = { 
𝑑𝛼2

𝑑𝑇
|𝑇 ≥ 0，

𝑑2𝛼2

𝑑𝑇2
≥ 0，𝑖𝑓 𝑇 < 𝑇𝑂 ‒ 𝑇

𝑑𝛼2

𝑑𝑇
|𝑇 ≤ 0，

𝑑2𝛼2

𝑑𝑇2
≥ 0，𝑖𝑓 𝑇 > 𝑇𝑂 ‒ 𝑇

𝛼2|𝑇 ≠ 𝑇𝑂 ‒ 𝑇
< 𝛼2|𝑇 = 𝑇𝑂 ‒ 𝑇

  
�

     The foregoing consideration can be applied to analyze the free energy 

curve. Similar conclusion can be acquired under the similar assumption that 

the local region with different TO-T can exhibit the similar temperature 

dependence of α2 except the different TO-T if the TO-T doesn’t changes 

hugely.
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