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The UV-Vis of P3
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Fig. S1 UV-vis absorption spectra of P3.

Table S1. The fitted lifetime of 750 nm of donor blend films with different DPPT-TT
content.

PPPITL 7, (ns) A, ) (ns)
(wt %)

0 1.76 0.56 0.033 3.595

0.5 1.80 0.55 0.037 3.364

1 1.91 0.53 0.045 3.012

2.5 1.98 0.52 0.050 2.866

5 2.13 0.32 0.026 3.256

10 3.04 0.26 0.032 2.727

The lifetimes were fitted using a Gaussian response function (1) convoluted with
a bipartite exponential decay function:

AV() = v, + 4, exp(_—t] + 4, exp(_—tJ 1)
T
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Photocurrent behavior
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Fig. S2 J-V curves of devices with P3, P3:DPPT-TT (DPPT-TT ratio with 0.5% ,1%,

5%, 10%, 50%, respectively) or DPPT-TT as active layers under AM 1.5G
illumination with light intensity of 100 mW c¢m.

Calculation of DOS of alloy

In our study, we assume that the donor 1 (D;) and the donor 2 (D;) form the
donor alloy. Base on Huang’s method,'? the following calculation is explicitly for this
case. Here, n/n, is the molecular number of D/D, of unit mass, /;//, is the number of
quasi-degenerate HOMO of per molecule of D;/D,, m;/m;, is the weight of D,/D,,
Eni/Enp 1s the HOMO of D/D,, Ey. is the effective HOMO of donor alloy, Erymo 18
the LUMO of acceptor. According to the density of state (DOS) model, gpi/gp> is the
density of state of D/D,, Gp)/Gp, is the density of state of per unit weight of D,/D,,

getr 18 the density of state of effective HOMO of alloy, G is the total state of per unit

mass of alloy. We use V,, to represent the V,. of the ternary solar cell. And

CTernary

Vocsinart @04 Vg, are the Voc of binary solar cells, donorl: acceptor and donor?2:

acceptor, respectively.

Then, we can get the equations as blow:
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Since the donors are simply blended without any chemical reaction, the E,,, and

E,;, do not affect each other. So, the effective density of state can be given

mn,l, exp _(E_EH1)2 + myn,l, exp _(E_EHz)2
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Introducing ratios fi;=m;/(m;+m;) and f,=m,/(m;+m,), the G can be re-

expressed as

2 2
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We set N.;=n;/; and N,=n,/,. Thus we get
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As gp; and gp, are the Gaussian distributions, the averaged energy level and

disorder of g.¢r can be derived in terms of the standard formulas
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Due to fi+f,=1, when N.;=N,,, the equation (2) can be transfer as

Ey = flEH1 + fZEHZ

In the same time, V¢ is calculated by empirical equation?

- _(EHOMO - ELUMO)/e +0.3V (3)
VOCBinaryl = _(EHl - ELUMO)/e +0.3)V (4)
VOCBinary2 = _(EH2 - ELUMO)/e + 03V

)

VOCTernary = _(EHe - ELUMO)/e + 03V

(6)
Combined the equation (2) to (6), the equation (7) can be obtained
f el OCBmawl + fz ‘N, e’ VOCBmar} 2
VOCTerna (7)
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Fig. S3 Pictorial representations of the frontier molecular orbitals of P3 and DPPT-TT
from the DFT calculations
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Fig. S4 V,. of PSCs based on different weight ratio of DPPT-TT and simulation

curves with different N.|/N,,, respectively.

Characterization

The cyclic voltammetry (CV) was measured on CHI 600D electrochemical
workstations (Shanghai Chenhua) at a scan rate of 50 mV/s with a nitrogen-saturated
solution of 0.1 M tetrabutylammonium hexafluorophosphate (Bus;NPF) in acetonitrile
(CH;CN) with glass carbon and Ag/AgNOs; electrode as the working and reference
electrode, respectively. A ferrocene/ferrocenium redox couple was used as an external
standard. The HOMO energy levels were calculated according to the following

equations (8), 4

Epono =~k =07/ ) + 4.8 Je) @®)
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Fig. S5 Cyclic voltammetry (CV) plots of P3:DPPT-TT blend films with different
DPPT-TT content.

Surface energy analysis

The interfacial surface energy (7, , ) between X and Y in the blend films can be

calculated using the equation for interfacial tensions (9), ?

Vxoy =Vx 7y _2\/ VxVy L) )]

where y, ,represents the interfacial surface energy between X and Y, $=0.000115
m*/mJ2.
The wetting coefficient (@,) of a guest material C (DPPT-TT) in blends of host

materials A (P3) and B (PC7;BM), which can predict the location of C in ternary
blends, can be calculated using Young’s equation (10) ,°

(0]

c

— 7/C—B _7/C—A (10)
Y a-B

If the wetting coefficient is larger than unity (@, >1), C will be located in domains of
A.If o, <-1, C will be located in domains of B. If —1< @, <1, C will be located at

the interface between domains of A and B. The @, ;» in P3:PC7;BM blend films

was calculated to be 2.11, which indicate that DPPT-TT molecules may have a
tendency to locate at the P3 domain



Table S2. Calculated values of G, for different incorporating devices.

DPPT-TT (wt %) P(E.T) Jea (MA cm2) Grax(m3 s1)

0 0.893 12.47
7.793 X 1027

0.5 0.920 18.13
1.133X 1028

1 0.896 15.18
9.487 X 1027

2.5 0.895 13.14
8.209 X 1027

5 0.856 11.62
7.264X 1027

10 0.858 12.20
7.628 X 1027

Hole and electron mobility measurement

The hole-only mobility (u,) was characterized from the device with the
configuration of ITO/PEDOT:PSS/active layer (110 nm)/MoOs/Ag, while electron-
only mobility (ux.) was measured from the device with the configuration of
ITO/ZnO/active layer (110 nm)/PFN/AL All the blend films were prepared in
accordance with the optimal solar cells conditions. The obtained current-voltage

curves were consistent with the Mott-Gurney square law, given by Equation (11),

9 (I/app/ B I/bi )2

J :§508},,u e (11)

Where J is the current density, &, is the permittivity of free space (~=8.85x10-14

Fecm™), ¢, is the relative dielectric constant of the organic active layer (2=3.00), L is

the thickness of the active layer, V,,, is the applied voltage on the device, Vi, 1is
built-in voltage, u is the mobility. V4, of electron-only device and hole-only device are

0.7 and 0 V, respectively.
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