## Dual Electric and Magnetic Responsivity of Smart Fluids Containing Multilayered Magnetite-Embedded Core/Shell Silica/Titania Nanoparticles Having an Outermost Silica Shell

*Chang-Min Yoon*<sup>†</sup>, *Yoonsun Jang*<sup>†</sup>, *Seungae Lee*<sup> $t^*$ </sup> and *Jyongsik Jang*<sup> $t^*$ </sup>

<sup>†</sup> School of Chemical and Biological Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea

<sup>‡</sup> Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu,

Seoul 05029, Korea

**RECEIVED DATE** (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to)

\* Tel.: 82-2-880-7069; Fax: 82-2-888-7295; e-mail: jsjang@plaza.snu.ac.kr

FT-IR spectra of nanoparticles in the range of 1700 – 900 cm<sup>-1</sup>



**Fig. S1** Fourier transform-infrared spectra of  $SiO_2/TiO_2$  core/shell,  $Fe_3O_4$ ,  $SiO_2/TiO_2@Fe_3O_4$  and  $SiO_2/TiO_2@Fe_3O_4/SiO_2$  nanoparticles in the ranges of 1,700 to 900 cm<sup>-1</sup>.

## Dielectric constant ( $\varepsilon$ ') curves of various nanoparticles



**Fig. S2** Dielectric constant ( $\varepsilon$ ') of various nanoparticles dispersed in silicone oil (20.0 vol%) as a function of electric field frequency (*f*).

## Detailed dielectric properties of various nanoparticles

|                                                                         |                 |                        | (=0:0 (01/0)                                                |
|-------------------------------------------------------------------------|-----------------|------------------------|-------------------------------------------------------------|
| Nanoparticles                                                           | $\mathcal{E}_0$ | $\mathcal{E}_{\infty}$ | $\Delta \varepsilon = (\varepsilon_0 - \varepsilon_\infty)$ |
| SiO <sub>2</sub>                                                        | 3.67            | 2.92                   | 0.75                                                        |
| SiO <sub>2</sub> /TiO <sub>2</sub>                                      | 4.55            | 3.21                   | 1.34                                                        |
| SiO <sub>2</sub> /TiO <sub>2</sub> @Fe <sub>3</sub> O <sub>4</sub>      | 5.06            | 3.51                   | 1.55                                                        |
| SiO <sub>2</sub> /TiO <sub>2</sub> @Fe <sub>3</sub> O <sub>4</sub> /SiO | 4.62            | 3.35                   | 1.27                                                        |

**Table S1** Dielectric parameters of nanoparticles dispersed in silicone oil  $(20.0 \text{ vol}\%)^a$ 

<sup>*a*</sup> Dielectric properties were measured by the impedance analyzer (Solatron-1260) and dielectric interface (Solatron-1296).

Dispersion stabilities of SiO<sub>2</sub>/TiO<sub>2</sub>@Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub> nanoparticle



**Fig. S3** Dispersion stabilities of  $Fe_3O_4$  and  $SiO_2/TiO_2@Fe_3O_4/SiO_2$  nanoparticles dispersed in silicone oil with the concentrations of 20.0 vol% [inset: definition of the sedimentation ratio (R)].

Practical OM observation of fibril-like structure formation under various conditions of external fields



**Fig. S4** OM observation of the practical fibril-like structure formation of  $SiO_2/TiO_2@Fe_3O_4/SiO_2$ nanoparticles-based EMR fluids under various conditions: a) only *H* field (0.2 T), b) only *E* field (3.0 kV mm<sup>-1</sup>), c) *E* + *H* fields in perpendicular direction, and d) *E* + *H* fields in parallel direction.