Electronic Supplementary Information (ESI)

A simple strategy to achieve remarkable mechanochromism of cationic Ir(III) phosphors through subtle ligand modification

Kai-Yue Zhao,^a Hui-Ting Mao,^a Li-Li Wen,^a Guo-Gang Shan,^{*a} Qiang Fu,^{*a} Hai-Zhu Sun^a and Zhong-Min Su^{*ab}

^a Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of chemistry, Northeast Normal University, Changchun, Jilin130024, P. R. China

E-mail: <u>shangg187@nenu.edu.cn</u> (G. G. Shan), <u>fuq863@nenu.edu.cn</u> (Q. Fu), <u>zmsu@nenu.edu.cn</u> (Z. M. Su).

^b School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin 130012, P. R. China

Table of Contents

1. Synthetic routes and characteristic of ancillary ligands L1-L4.				
2. ¹ H NMR and ¹⁹ F NMR spectra of Ir-CzBr, Ir-Cz, Ir-CzMe and Ir-	S 4			
CzDMe.	54			
3. Emission spectra of Ir-Cz, Ir-CzMe and Ir-CzDMe in CH ₃ CN-H ₂ O				
mixtures with different H_2O fractions (0–90%) at room temperature and	S8			
their plots of relative PL intensities (I/I_0) .				
4. Photophysical characteristics of Ir-CzBr, Ir-Cz, Ir-CzMe and Ir-	S 0			
CzDMe.	37			
5. Molecular orbital amplitude plots and energy levels of Ir-Cz, Ir-CzMe	S10			
and Ir-CzDMe.	510			
6. Emission spectra of Ir-Cz and Ir-CzDMe in various states at room	\$10			
temperature.	510			
7. Maximum emission wavelength changes of Ir-CzBr, Ir-Cz and Ir-	S 11			
CzDMe versus repeating cycles.	511			
8. Powder X-ray diffraction patterns of Ir-CzBr, Ir-Cz and Ir-CzDMe in	\$12			
various states.	512			
9. Chemical structure of Ir-CztBut.	S13			
10. The emission spectrum of Ir-CztBut in powder at room temperature.	S13			
11. References.	S13			

Synthetic routes and characteristic of ancillary ligands L1-L4

Scheme S1 Synthetic routes of the ancillary ligands L1-L4.

Scheme S1 exhibits the synthetic routes of the ancillary ligands L1-L4. 2-(3-methyl-1H-1,2,4-triazol-5-yl)pyridine, the intermediate Inter-1 and ancillary ligand L2, L4 were synthesized according to the modified reported procedures.^{1, 2}

3-bromo-9-(4-(3-methyl-5-(pyridin-2-yl)-1H-1,2,4-triazol-1-yl)butyl)-9H-

carbazole (L1).

Compound L1 was prepared according to the procedure described for L2. Yield: 66%. ¹H NMR (500 MHz, CDCl₃, ppm): δ 8.53 (d, *J*= 4.5 Hz, 1H), 8.14–8.17 (m, 2H), 8.01 (d, *J*= 7.5 Hz, 1H), 7.80 (t, *J*= 7.5 Hz, 1H),7.44–7.50 (m, 2H), 7.37 (d, *J*= 8.5 Hz, 2H), 7.29–7.31 (m, 1H), 7.21–7.26 (m, 2H), 4.78 (t, *J* = 7.0 Hz, 2H), 4.30 (t, *J* = 7.0 Hz, 2H), 2.44 (s, 3H), 1.93–2.05 (m, 2H), 1.88–1.91 (m, 2H). MS (ESI): calcd for [C₂₄H₂₂BrN₅] ([M+H]⁺) m/z 460.1137, found 460.1131. Anal. Calcd for C₂₄H₂₂BrN₅: C, 62.61; H, 4.82; N, 15.21. Found: C, 62.54; H, 4.75; N, 15.29.

3-methyl-9-(4-(3-methyl-5-(pyridin-2-yl)-1*H*-1,2,4-triazol-1-yl)butyl)-9*H*-carbazole (L3).

Compound **L3** was prepared according to the procedure described for **L2**. Yield: 68%. ¹H NMR (500 MHz, CDCl₃, ppm): δ 8.52–8.55 (m, 1H), 8.15 (d, *J*= 7.5 Hz, 1H), 8.04 (d, *J*= 7.5 Hz, 1H), 7.88 (s, 1H), 7.78–7.81 (m, 1H), 7.40–7.42 (m,1H), 7.34 (d, *J*= 8.5 Hz, 1H), 7.29–7.31 (m, 2H), 7.24–7.28 (m, 2H), 7.17–7.20 (m, 1H), 4.75–4.80 (m, 2H), 4.26–4.33 (m, 2H), 2.52 (d, J = 7.0 Hz, 3H), 2.44 (d, J= 3.5 Hz, 3H), 1.95–2.01 (m, 2H), 1.88–1.93 (m, 2H). MS (ESI): calcd for $[C_{24}H_{25}N_5]$ ($[M+H]^+$) m/z 396.2188, found 396.2183. Anal. Calcd for $C_{24}H_{25}N_5$: C, 75.92; H, 6.37; N, 17.71. Found: C, 75.85; H, 6.23; N, 17.80.

Fig. S1 ¹H NMR spectrum of Ir-CzBr in DMSO-*d*₆.

Fig. S2 ¹H NMR spectrum of Ir-Cz in DMSO- d_6 .

Fig. S5 ¹⁹F NMR spectrum of Ir-CzBr in DMSO- d_6 .

Fig. S6 ¹⁹F NMR spectrum of **Ir-Cz** in DMSO- d_6 .

Fig. S7 ¹⁹F NMR spectrum of Ir-CzMe in DMSO- d_6 .

Fig. S8 ¹⁹F NMR spectrum of Ir-CzDMe in DMSO- d_6 .

Fig. S9 (a) Emission spectra of **Ir-Cz** in CH₃CN-H₂O mixtures with different H₂O fractions (0–90%) at room temperature. (b) Plot of relative PL intensity (I/I_0) at 489 nm *versus* the composition of CH₃CN-H₂O mixture of **Ir-Cz**, where I_0 = peak intensity in pure CH₃CN. Inset: photographs of **Ir-Cz** in pure CH₃CN solution and CH₃CN-H₂O mixture (f_w = 90%) under 365 nm UV illumination.

Fig. S10 (a) Emission spectra of **Ir-CzMe** in CH₃CN-H₂O mixtures with different H₂O fractions (0–90%) at room temperature. (b) Plot of relative PL intensity (I/I_0) at 508 nm *versus* the composition of CH₃CN-H₂O mixture of **Ir-CzMe**, where I_0 = peak intensity in pure CH₃CN. Inset: photographs of **Ir-CzMe** in pure CH₃CN solution and CH₃CN-H₂O mixture (f_w = 90%) under 365 nm UV illumination.

Fig. S11 (a) Emission spectra of **Ir-CzDMe** in CH₃CN-H₂O mixtures with different H₂O fractions (0–90%) at room temperature. (b) Plot of relative PL intensity (I/I_0) at 513 nm *versus* the composition of CH₃CN-H₂O mixture of **Ir-CzDMe**, where I_0 = peak intensity in pure CH₃CN. Inset: photographs of **Ir-CzDMe** in pure CH₃CN solution and CH₃CN-H₂O mixture (f_w = 90%) under 365 nm UV illumination.

	Solution	Solid		Neat film
	$\lambda_{\mathrm{em}}{}^{a}$ (nm), $\Phi_{\mathrm{F}}{}^{b}$ (%), τ^{c} (µs)	$\lambda_{\mathrm{em}}{}^{a}$ (nm), $\boldsymbol{\Phi}_{\mathrm{F}}{}^{b}$ (%), τ^{c} (µs)	$\alpha_{\rm AIE}{}^d$	$\lambda_{\rm em}{}^a$ (nm)
Ir-CzBr	494, 1.0, 0.023	479, 33.3, 1.16	33.30	491
Ir-Cz	497, 0.5, 0.017	488, 23.8, 1.09	47.60	492
Ir-CzMe	503, 0.4, 0.028	498, 5.9, 1.20	14.75	510
Ir-	488, 0.4, 0.038	516 9 4 0 29	21.00	529
CzDMe		510, 8.4, 0.28	21.00	338

Table S1 Photophysical characteristics of Ir-CzBr, Ir-Cz, Ir-CzMe and Ir-CzDMe.

^{*a*} λ_{em} , emission maximum. ^{*b*} Φ_{F} , photoluminescence quantum yield measured by an integrating sphere. ^{*c*} τ , photoluminescence lifetime. ^{*d*} $\alpha_{AIE} = \Phi_{F}(\text{solid}) / \Phi_{F}(\text{solution})$.

Fig. S12 Molecular orbital amplitude plots and energy levels of Ir-Cz, Ir-CzMe and Ir-CzDMe.

Fig. S13 Emission spectra of **Ir-Cz** in various states at room temperature. Inset: the photographs of **Ir-Cz** in various states under 365 nm UV illumination.

Fig. S14 Emission spectra of **Ir-CzDMe** in various states at room temperature. Inset: the photographs of **Ir-CzDMe** in various states under 365 nm UV illumination.

Fig. S15 Maximum emission wavelength changes of Ir-CzBr versus repeating cycles.

Fig. S16 Maximum emission wavelength changes of Ir-Cz versus repeating cycles.

Fig. S17 Maximum emission wavelength changes of Ir-CzDMe versus repeating cycles.

Fig. S18 Powder X-ray diffraction patterns of Ir-CzBr in various states.

Fig. S19 Powder X-ray diffraction patterns of Ir-Cz in various states.

Fig. S20 Powder X-ray diffraction patterns of Ir-CzDMe in various states.

Fig. S21 Chemical structure of Ir-CztBut reported in Ref. 2.

Fig. S22 The emission spectrum of Ir-CztBut in powder at room temperature.

References

- 1. K.-Y. Zhao, G.-G. Shan, Q. Fu and Z.-M. Su, *Organometallics*, 2016, **35**, 3996.
- G.-G. Shan, H.-B. Li, H.-Z. Sun, D.-X. Zhu, H.-T. Cao and Z.-M. Su, J. Mater. Chem. C, 2013, 1, 1440.