Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Transparent luminescent nanopaper based on graphitic carbon nitride nanosheets grafted oxidized cellulose nanofibrills with excellent thermal and mechanical properties

Lan Mu^a, Liyi Shi^a, Yanqin Wang^a, Qianfan Zhou^b, Jinhong Ye^b, Xin Feng^{a,*}

^a Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University, Shanghai 200444, PR China

^b Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, PR China

^c Corresponding Author:

^c Email: <u>fengxin@shu.edu.cn</u> (X. Feng).

Figure S1. Optical images of bulk $g-C_3N_4$ and $g-C_3N_4$ nanosheets solutions after storage for more than a month.

Figure S2. Photoluminescence spectra of as-obtained $g-C_3N_4$ nanosheets under different excitations.

Figure S3 Photostability of the luminescent g- C_3N_4 @TCNF nanopaper (6 wt%) irradiated with a laser excited at 365 nm for various time points (inset, normalized fluorescence intensity).

Figure S4 Digital pictures of the $g-C_3N_4$ @TCNF nanopaper (6 wt %) soaked in deionized water and ethanol for 1 h, 2 h, 4 h, 8 h and under drying conditions.