Supporting Information

Designing lead-free bismuth ferrite-based ceramics learning from relaxor ferroelectric behavior for simultaneous high energy density and efficiency under low electric field

Ningtao Liu^{a,b,c}, Ruihong Liang^{a,*}, Zhiyong Zhou^a, Xianlin Dong^{a,c,*}

^a Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese

Academy of Sciences, Shanghai 200050, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

^c The State Key Lab of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics,

Chinese Academy of Sciences, Shanghai 200050, China

Corresponding author E-mail: *liangruihong@mail.sic.ac.cn* Corresponding author E-mail: *xldong@mail.sic.ac.cn*

Keywords: Lead-free ceramics, Bismuth ferrite-based, Energy-storage, Pinched hysteresis loop, Relaxor ferroelectrics

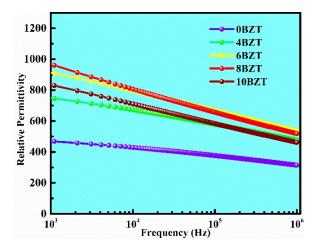


Figure S1. Frequency-dependent dielectric properties for the BZT-modified BFO-based bulk ceramics

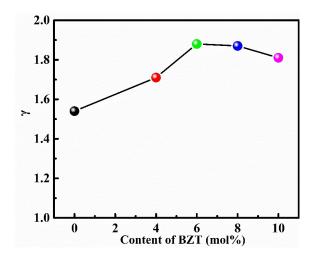


Figure S2. The diffuseness γ as a function of the BZT content

Herein the diffuseness γ is calculated from the ε -T pattern (1MHz). Based on the following equation: $1/\varepsilon - 1/\varepsilon_{max} = (T-T_c)^{\gamma/C} (T>T_c)$, where $\gamma (1 \le \gamma \le 2)$ and C are constant. The degree of relaxor behavior can be evaluated by the parameter γ , when $\gamma = 1$ represents a normal ferroelectric material, and $\gamma = 2$ represents a complete relaxor ferroelectric material.¹

References:

Shvartsman, V. V.; Lupascu, D. C.; Green, D. J., Lead-Free Relaxor Ferroelectrics. *Journal of the American Ceramic Society* 2012, 95 (1), 1-26.