Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

three-phase percolative nanocomposite films incorporated with high dielectric constant ceramic and conductive multi-walled carbon nanotubes

Guifang Liu, ^a Yi Chen ^d, Minjie Gong, ^a Xiaoyun Liu, ^a Zhong-Kai Cui, ^{b,*} Qibing Pei, ^c Jinlou Gu, ^a

Chen Huang, ^a Qixin Zhuang ^{a,*}

^{a.} Key Laboratory of Advanced Polymer Materials of Shanghai, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

^{b.} Southern Medical University, Guangzhou, Guangdong Province, 510515, China.

^{c.} Soft Materials Research Laboratory, Department of Materials Science and Engineering,
University of California, Los Angeles, Los Angeles, CA 90095, United State.

^{d.} Shanghai Spaceflight Precision Machinery Institute, shanghai, 201600, china.

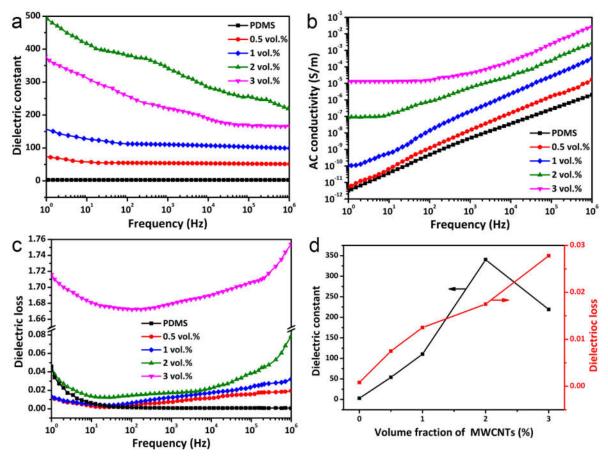


Fig. S1 (a) Dielectric constant, (b) conductivity and (c) dielectric loss as a function of frequency for pure PDMS and MWCNTs/PDMS films with various amounts of MWCNTs at room temperature, (d) dielectric constant and dielectric loss as a function of volume fraction of MWCNTs at 1 kHz and room temperature.

 Table S1 The dielectric and mechanical properties of pure PDMS and CCTO@MWCNTs/PDMS (10 vol.% CCTO) with various amounts of MWCNTs.

Sample	ε	E _b (kV mm ⁻¹)	Young' s modulus (MPa)	Tensile strength (MPa)	Breaking elongation (%)
Pure PDMS	2.93	65.3 ± 0.6	0.70 ± 0.009	0.37 ± 0.016	255 ± 5
0.5 vol.%	96.5	57.0 ± 1.3	0.85 ± 0.013	0.47 ± 0.012	242 ± 9
1 vol.%	138	55.7 ± 1.4	0.95 ± 0.012	0.69 ± 0.023	222 ± 9
2 vol.%	308	52.8 ± 1.0	1.06 ± 0.008	1.07 ± 0.016	179 ± 8
2.3 vol.%	419	52.1 ± 0.6	1.08 ± 0.010	1.08 ± 0.013	162 ± 11
3 vol.%	699	50.7 ± 1.1	1.12 ± 0.012	1.12 ± 0.021	134 ± 7
4 vol.%	2133	47.1 ± 0.8	1.16 ± 0.011	0.83 ± 0.013	93 ± 5