Electronic Supplementary Information (ESI)

Transforming Molecular Orientation of Crystalline Lamellae by the Degree of Multi-Fluorination within D-A Copolymers and its Effect on Photovoltaic Performance

${ }^{\text {a }}$ State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan
University of Technology, Wuhan, 430070, P. R. China. E-mail: *E-mail:shengqiang@whut.edu.cn
${ }^{\mathrm{b}}$ Department of Physics, Chinese University of Hong Kong, Hong Kong, P. R. China. *E-mail: xhlu@phy.cuhk.edu.hk
${ }^{\text {c }}$ Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North
Carolina 27599-3290, United States. *E-mail: wyou@unc.edu

The list of the content:

1. Materials
2. Measurements and instruments.
3. Fabrication and characterization of polymer solar cells.
4. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}$ and high resolution MALDI-TOF mass spectrometry of the compounds in this work (Fig. S1- Fig. S17)
5. Supplementary figures and tables:
a) TGA curves of the two copolymers at a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$ under nitrogen (Fig. S18).
b) Cyclic voltammogram curves of the two copolymers in thin film (Fig. S19).
c) $J-V$ characteristics of polymers: $\mathrm{PC}_{71} \mathrm{BM}$ PSCs in conventional architecture at different $\mathrm{D}: \mathrm{A}$ weight ratio (Fig. S20).
d) Photovoltaic properties of Polymers: $\mathrm{PC}_{71} \mathrm{BM}$ PSCs in conventional architecture at different D/A weight ratios (Table S1).
e) The optimized photovoltaic properties of PDTBBT-3F:PC $7_{11} \mathrm{BM}=1: 2.5$ and PDTBBT-4F:PC ${ }_{71} \mathrm{BM}=1: 2 \mathrm{PSCs}$ in conventional architecture with processing additives of DIO and DPE (Table S2).
f) Extinction coefficient spectra of BHJ blend films for optimum device based on the Polymers: $\mathrm{PC}_{71} \mathrm{BM}$ prepared from o-DCB (Fig. S21).
g) $J^{0.5} v s \mathrm{~V}_{\text {appl }}-\mathrm{V}_{\text {bi }}-\mathrm{V}_{\mathrm{rs}}$ plots for hole-only and electron-only devices of PDTBBT-3F and PDTBBT-4F blend films (Fig. S22)
h) Tapping-mode AFM height and phase images of the optimized BHJ blends (Fig. S23).
i) Physical parameters of PDTBBT-3F:PC ${ }_{71} \mathrm{BM}$ and PDTBBT-4F:PC ${ }_{71} \mathrm{BM}$ devices (Table S3).
j) The coherence length $\left(\mathrm{L}_{\mathrm{C}}\right)$ and full width at half-maximum (FWHM) along both OOP and IP direction of the neat PDTBBT-3F and PDTBBT-4F, and the corresponding polymer: $\mathrm{PC}_{71} \mathrm{BM}$ blend films (Table S4).

1. Materials

4,7-dibromo-5,6-difluorobenzo[c][1,2,5]thiadiazole and 4,7-dibromo-5-fluorobenzo[c][1,2,5]thiadiazole were purchased from Derthon. [6,6]-Phenyl C_{71}-butyric acid methyl ester ($\mathrm{PC}_{71} \mathrm{BM}$) was purchased from Solenne. Other reagents were used as purchased from JK Chemical and Energy Chemical. Anhydrous THF was obtained by distillation over sodium/benzophenone under nitrogen atmosphere.

2. Measurements and Instruments

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum were recorded on a Bruker AV500 at 500 MHz using deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ as the solvent. The molecular weights of two polymers were determined by high temperature gel-permeation chromatography (GPC) with trichlorobenzne as the eluent at 150 ${ }^{\circ} \mathrm{C}$ relative to a polystyrene standard on an Agilent PL-GPC 220 system. Thermogravimetric analysis measurements were carried out on NETZSCH (STA449F3) at a heating rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$ under nitrogen. Room temperature UV-vis spectra of polymer solutions and films were recorded on a SHIMADZU UV-1750 spectrophotometer. The dilute solutions were prepared as followings: we first prepared the polymer solutions with a concentration of $10 \mathrm{mg} \mathrm{mL}^{-1}$ in dichlorobenzene, and then took $40 \mu \mathrm{~L}$ of them with a micro syringe and injected into appropriate amount of dichlorobenzene (volume with dichlorobenzene to 4 mL) to attain a concentration of $1 \times 10^{-5} \mathrm{mg}$ mL^{-1}. Solution UV-Vis absorption spectra at elevated temperatures were collected on Perkin Elmer Lambda 750 UV/VIS/NIR Spectrometer. The temperature-dependent experiments were measured through stepwise increasing temperature from room temperature to fully disaggregate temperature (such as $100^{\circ} \mathrm{C}$). Cyclicvoltammetry (CV) experiments were performed with CHI 660D analyzer. All CV measurements were carried out in 0.1 M tetrabutylammonium hexafluorophosphate ($\mathrm{Bu}_{4} \mathrm{NPF}_{6}$) in anhydrous acetonitrile with a conventional three-electrode configuration employing a platinum wire as a counter electrode, platinum electrode coated with a thin polymer film as a working electrode, and $\mathrm{Ag} / \mathrm{Ag}^{+}$electrode as a reference electrode at a scan rate of $80 \mathrm{mV} \mathrm{s}{ }^{-1}$. The atomic force microscopy (AFM) images ($5.0 \mu \mathrm{~m} \times 5.0 \mu \mathrm{~m}$) were obtained through tapping mode on Multimode 8 SPM at ambient condition. RTESPA ($0.01-0.025$ ohm-cm Antimony (n) doped silicon) tips with a spring constant of $20-80 \mathrm{~N} \mathrm{~m}^{-1}$ and a frequency of $305-356 \mathrm{kHz}$ were used in
imaging. The GIWAXS measurements of the pristine polymers and polymer:fullerene blend films were conducted at 23 A SWAXS beamline of a superconductor wiggler at the National Synchrotron Radiation Research Center, Hsinchu, Taiwan, using 10 keV beam incident at 0.15° and a C9728DK area detector.

3. Fabrication and Characterization of Polymer Solar Cells

The PSC devices were fabricated with the conventional configuration of ITO/PEDOT:PSS/donor (PDTBBT-3F or PDTBBT-4F): $\mathrm{PC}_{71} \mathrm{BM} / \mathrm{Ca}(\sim 20 \mathrm{~nm}) / \mathrm{Al}(80 \mathrm{~nm})$. Prior to be used, indium tin oxide glass substrates were sequentially cleaned with distilled water, acetone, iso-propanol and were treated by UV-Ozone. For BHJ devices, poly(3,4-thylenedioxythiophene):polystyrenesulfonic acid (PEDOT:PSS) was spin-coated onto the ITO substrate and annealed at $150^{\circ} \mathrm{C}$ for 20 min . To prepare the BHJ films, the polymers of PDTBBT-3F or PDTBBT-4F ($10 \mathrm{mg} \mathrm{mL}^{-1}$) were blended with $\mathrm{PC}_{71} \mathrm{BM}$ in o-dichlorobenzene (o-DCB), respectively. BHJ films were spin-cast on the top of the PEDOT:PSS layers in a N_{2} filled glove box. Subsequently, $\mathrm{Ca}(20 \mathrm{~nm})$ and $\mathrm{Al}(80 \mathrm{~nm})$ were sequentially deposited on the top of the active layers as the cathode at a pressure of $2 \times 10^{-6} \mathrm{mbar}$ through a shadow mask that defines 8 devices with each active area of $0.09 \mathrm{~cm}^{2}$.

Current-voltage measurements were carried out in a glovebox under AM 1.5 G irradiation (100 $\mathrm{mW} \mathrm{cm}{ }^{-2}$) from a 450 W solar simulator (Newport 94023A-U) calibrated by a NREL certified standard silicon cell. Current versus potential ($J-V$) curves were recorded with a Keithley 2420 digital source meter. For external quantum efficiency (EQE) tests, the devices were transferred by a self-made testing box from the glovebox into the chamber of a 7-SCSpec spectral performance of solar cell test system consisting of a 500 watt SCS028-7ILX500 xenon light source, a 7ISW301 vertical grating spectrometer, a 71FW6 filter wheel, a SR810 lock-in amplifier. The calibration of the incident monochromatic light was carried out with a Hamamatsu S1337-1010 BQ Silicon photodetector.

The SCLC $J-V$ curves were obtained in the dark from the electron-only and hole-only devices of ITO/ $\mathrm{ZnO} /$ active-layer/Ca/Al and ITO/PEDOT:PSS/active-layer $/ \mathrm{MoO}_{3} / \mathrm{Ag}$, respectively. The electron and hole mobility were calculated using the Mott-Gurney square law, $J=(9 / 8) \varepsilon_{0} \varepsilon_{r} \mu\left(\mathrm{~V}^{2} / \mathrm{L}^{3}\right)$, where ε_{0} is vacuum permittivity, ε_{r} is the dielectric constant of the polymer used, μ is the charge
carrier mobility, V is the effective applied voltage, and L is the thickness of the active film in the device.
4. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-NMR and high resolution MALDI-TOF mass spectrometry of new compounds in this work

Fig. S1 ${ }^{1} \mathrm{H}$ NMR of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)dithiophene (1).

Fig. S2 ${ }^{13}$ C NMR of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)dithiophene (1).

Fig. S3 MALDI-TOF mass spectrometry of
2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)dithiophene (1).

Fig. S4 ${ }^{1}$ H NMR of 5,5'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene) bis(2,4-dibromothiophene) (2).

Fig. S5 ${ }^{13}$ C NMR of 5,5'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene) bis(2,4-dibromothiophene) (2).

Fig. S6 MALDI-TOF mass spectrometry of 5,5'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene) bis-(2,4-dibromothiophene) (2).

Fig. $\mathbf{S 7}{ }^{1} \mathrm{H}$ NMR of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis(3-bromothiophene) (3).
NMR
3

Fig. S8 ${ }^{13} \mathrm{C}$ NMR of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene) bis(3-bromothiophene) (3).

Fig. S9 MALDI-TOF mass spectrometry of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis-(3-bromothiophene) (3).

Fig. S10 ${ }^{1} \mathrm{H}$ NMR of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis(3-fluorothiophene) (4).

Fig. S11 ${ }^{13}$ C NMR of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis(3-fluorothiophene) (4).

Fig. S12 ${ }^{19}$ F NMR of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis(3-fluorothiophene) (4).

Fig. S13 MALDI-TOF mass spectrometry of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis-(3-fluorothiophene) (4).

Fig. S14 ${ }^{1} \mathrm{H}$ NMR of (5,5'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis-(4-fluorothiophene-5,2-diyl))bis(trimethylstannane) (5).

Fig. S15 ${ }^{13} \mathrm{C}$ NMR of (5,5'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis-(4-fluorothiophene-5,2-diyl))bis(trimethylstannane) (5).

Fig. S16 ${ }^{19}$ F NMR of (5,5'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis-(4-fluorothiophene-5,2-diyl))bis(trimethylstannane) (5).

Fig. S17 MALDI-TOF mass spectrometry of (5,5'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis-(4-fluorothiophene-5,2-diyl))bis(trimethylstannane) (5).

5. Supplementary Figures and Tables

Fig. S18. TGA curves of PDTBBT-3F and PDTBBT-4F at heating rate of $10^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$ under N_{2}.

Fig. 19 Cyclic voltammograms of the polymers in thin film (drop cast from $3 \mathrm{mg} \mathrm{mL}^{-1}$ chloroform solution) measured in acetonitrile $\left(0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}\right)$ at a scan rate of $80 \mathrm{mV} \mathrm{s}^{-1}$.

Fig. S20 $J-V$ characteristics of a) PDTBBT-3F and b) PDTBBT-4F based PSCs with different polymers: $\mathrm{PC}_{71} \mathrm{BM}$ blend ratios (solvent: $o-\mathrm{DCB}$).

Table S1. Photovoltaic properties of Polymers: $\mathrm{PC}_{71} \mathrm{BM}$ PSCs in conventional architecture at different D/A weight ratios ((parenthesized with the average values and standard deviations over 15 devices)

Polymer	D:A ratio (w/w)	Thickness (nm)	$\begin{aligned} & V_{o c} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{gathered} J_{s c} \\ \left(\mathrm{mAcm}^{-2}\right) \end{gathered}$	$\begin{aligned} & \text { FF } \\ & (\%) \end{aligned}$	$\begin{gathered} \text { PCE } \\ (\%) \end{gathered}$
PDTBBT-3F	1:2	201 ± 2	$\begin{gathered} 0.801 \\ (0.796 \pm 0.008) \end{gathered}$	$\begin{gathered} 16.80 \\ (16.52 \pm 0.32) \end{gathered}$	$\begin{gathered} 55.3 \\ (54.8 \pm 1.0) \end{gathered}$	$\begin{gathered} 7.39 \\ (7.16 \pm 0.25) \end{gathered}$
	1:2.5	205 ± 3	$\begin{gathered} 0.804 \\ (0.798 \pm 0.009) \end{gathered}$	$\begin{gathered} 17.35 \\ (17.12 \pm 0.30) \end{gathered}$	$\begin{gathered} 59.8 \\ (59.4 \pm 0.9) \end{gathered}$	$\begin{gathered} 8.33 \\ (8.15 \pm 0.21) \end{gathered}$
	1:3	203 ± 3	$\begin{gathered} 0.768 \\ (0.763 \pm 0.007) \end{gathered}$	$\begin{gathered} 16.12 \\ (15.89 \pm 0.26) \end{gathered}$	$\begin{gathered} 52.8 \\ (52.4 \pm 0.8) \end{gathered}$	$\begin{gathered} 6.58 \\ (6.41 \pm 0.19) \end{gathered}$
PDTBBT-4F	1:1	178 ± 2	$\begin{gathered} 0.803 \\ (0.798 \pm 0.008) \end{gathered}$	$\begin{gathered} 12.64 \\ (12.42 \pm 0.28) \end{gathered}$	$\begin{gathered} 48.6 \\ (48.1 \pm 0.8) \end{gathered}$	$\begin{gathered} 4.95 \\ (4.79 \pm 0.23) \end{gathered}$
	1:2	185 ± 2	$\begin{gathered} 0.817 \\ (0.812 \pm 0.007) \end{gathered}$	$\begin{gathered} 14.25 \\ (14.03 \pm 0.24) \end{gathered}$	$\begin{gathered} 50.7 \\ (50.3 \pm 1.0) \end{gathered}$	$\begin{gathered} 5.92 \\ (5.79 \pm 0.16) \end{gathered}$
	1:3	190 ± 3	$\begin{gathered} 0.812 \\ (0.806 \pm 0.01) \end{gathered}$	$\begin{gathered} 11.36 \\ (11.12 \pm 0.30) \end{gathered}$	$\begin{gathered} 47.3 \\ (46.8 \pm 0.9) \end{gathered}$	$\begin{gathered} 4.33 \\ (4.18 \pm 0.20) \\ \hline \end{gathered}$

Table S2 The optimized photovoltaic properties of PDTBBT-3F:PC ${ }_{71} \mathrm{BM}=1: 2.5$ and PDTBBT-4F:PC ${ }_{71} \mathrm{BM}=1: 2 \mathrm{PSCs}$ in conventional architecture with processing additives of DIO and DPE ($\mathrm{v} / \mathrm{v}, o$-DCB).

BHJ	Additive	$\begin{aligned} & V_{o c} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{gathered} J_{s c} \\ \left(\mathrm{~mA} \mathrm{~cm}^{-2}\right) \end{gathered}$	$\begin{gathered} \hline \text { FF } \\ (\%) \end{gathered}$	$\begin{gathered} \hline \mathrm{PCE}^{\mathrm{a}} \\ (\%) \end{gathered}$
$\begin{gathered} \text { PDTBBT-3F:PC }{ }_{71} \mathrm{BM} \\ =1: 2.5 \end{gathered}$	W/O	$\begin{gathered} 0.804 \\ (0.798 \pm 0.009) \end{gathered}$	$\begin{gathered} 17.35 \\ (17.12 \pm 0.30) \end{gathered}$	$\begin{gathered} 59.8 \\ (59.4 \pm 0.9) \end{gathered}$	$\begin{gathered} 8.33 \\ (8.15 \pm 0.21) \end{gathered}$
	1\% DIO	$\begin{gathered} 0.785 \\ (0.779 \pm 0.008) \end{gathered}$	$\begin{gathered} 15.02 \\ (14.81 \pm 0.25) \end{gathered}$	$\begin{gathered} 49.8 \\ (49.3 \pm 0.9) \end{gathered}$	$\begin{gathered} 5.87 \\ (5.73 \pm 0.19) \end{gathered}$
	2\% DIO	$\begin{gathered} 0.793 \\ (0.786 \pm 0.008) \end{gathered}$	$\begin{gathered} 15.98 \\ (15.76 \pm 0.27) \end{gathered}$	$\begin{gathered} 52.6 \\ (52.1 \pm 0.7) \end{gathered}$	$\begin{gathered} 6.64 \\ (6.47 \pm 0.17) \end{gathered}$
	3\% DIO	$\begin{gathered} 0.764 \\ (0.758 \pm 0.007) \end{gathered}$	$\begin{gathered} 14.56 \\ (14.34 \pm 0.26) \end{gathered}$	$\begin{gathered} 46.4 \\ (45.8 \pm 0.8) \end{gathered}$	$\begin{gathered} 5.13 \\ (4.95 \pm 0.23) \end{gathered}$
	1\% DPE	$\begin{gathered} 0.814 \\ (0.808 \pm 0.008) \end{gathered}$	$\begin{gathered} 16.33 \\ (16.07 \pm 0.30) \end{gathered}$	$\begin{gathered} 51.2 \\ (52.4 \pm 1.0) \end{gathered}$	$\begin{gathered} 6.81 \\ (6.59 \pm 0.25) \end{gathered}$
	2\% DPE	$\begin{gathered} 0.822 \\ (0.815 \pm 0.01) \end{gathered}$	$\begin{gathered} 16.65 \\ (16.39 \pm 0.33) \end{gathered}$	$\begin{gathered} 53.5 \\ (53.0 \pm 0.9) \end{gathered}$	$\begin{gathered} 7.26 \\ (7.03 \pm 0.27) \end{gathered}$
	3\% DPE	$\begin{gathered} 0.809 \\ (0.803 \pm 0.009) \end{gathered}$	$\begin{gathered} 15.79 \\ (15.56 \pm 0.28) \end{gathered}$	$\begin{gathered} 48.9 \\ (48.3 \pm 0.8) \end{gathered}$	$\begin{gathered} 6.25 \\ (6.08 \pm 0.20) \end{gathered}$
$\begin{gathered} \text { PDTBBT-4F:PC }{ }_{71} \mathrm{BM} \\ =1: 2 \end{gathered}$	W/O	$\begin{gathered} 0.817 \\ (0.812 \pm 0.007) \end{gathered}$	$\begin{gathered} 14.25 \\ (14.03 \pm 0.24) \end{gathered}$	$\begin{gathered} 50.7 \\ (50.3 \pm 1.0) \end{gathered}$	$\begin{gathered} 5.92 \\ (5.79 \pm 0.16) \end{gathered}$
	1\% DIO	$\begin{gathered} 0.779 \\ (0.772 \pm 0.008) \end{gathered}$	$\begin{gathered} 11.93 \\ (11.70 \pm 0.27) \end{gathered}$	$\begin{gathered} 43.8 \\ (43.3 \pm 0.9) \end{gathered}$	$\begin{gathered} 4.07 \\ (3.92 \pm 0.18) \end{gathered}$
	2\% DIO	$\begin{gathered} 0.782 \\ (0.777 \pm 0.009) \end{gathered}$	$\begin{gathered} 12.78 \\ (12.53 \pm 0.29) \end{gathered}$	$\begin{gathered} 46.2 \\ (45.7 \pm 0.8) \end{gathered}$	$\begin{gathered} 4.61 \\ (4.48 \pm 0.19) \end{gathered}$
	3\% DIO	$\begin{gathered} 0.743 \\ (0.738 \pm 0.007) \end{gathered}$	$\begin{gathered} 9.87 \\ (9.69 \pm 0.23) \end{gathered}$	$\begin{gathered} 42.8 \\ (42.2 \pm 0.9) \end{gathered}$	$\begin{gathered} 3.13 \\ (2.98 \pm 0.17) \end{gathered}$
	1\% DPE	$\begin{gathered} 0.760 \\ (0.752 \pm 0.01) \end{gathered}$	$\begin{gathered} 13.02 \\ (12.75 \pm 0.32) \end{gathered}$	$\begin{gathered} 43.6 \\ (43.0 \pm 0.9) \end{gathered}$	$\begin{gathered} 4.31 \\ (4.14 \pm 0.23) \end{gathered}$
	2\% DPE	$\begin{gathered} 0.778 \\ (0.772 \pm 0.01) \end{gathered}$	$\begin{gathered} 13.62 \\ (13.38 \pm 0.30) \end{gathered}$	$\begin{gathered} 45.6 \\ (45.1 \pm 0.9) \end{gathered}$	$\begin{gathered} 4.83 \\ (4.62 \pm 0.25) \end{gathered}$
	3\% DPE	$\begin{gathered} 0.702 \\ (0.695 \pm 0.009) \end{gathered}$	$\begin{gathered} 10.87 \\ (10.66 \pm 0.28) \end{gathered}$	$\begin{gathered} 39.7 \\ (39.2 \pm 0.8) \end{gathered}$	$\begin{gathered} 3.02 \\ (2.89 \pm 0.20) \end{gathered}$

[^0]

Figure S21. Extinction coefficient spectra of BHJ blend films for optimum device based on the Polymers: $\mathrm{PC}_{71} \mathrm{BM}$ prepared from o - DCB .

Fig. S22 $J^{0.5}$ vs $\mathrm{V}_{\text {appl }}-\mathrm{V}_{\text {bi }}-\mathrm{V}_{\text {rs }}$ plots for a) hole-only and b) electron-only devices of PDTBBT-3F and PDTBBT-4F blend films.

Fig. S23 Tapping-mode AFM height (a and b) and phase (c and d) images of PDTBBT-3F:PC ${ }_{71}$ BM (a and c) and PDTBBT-4F:PC ${ }_{71} \mathrm{BM}(\mathrm{b}$ and d) blends, respectively.

Table S3. Physical parameters of PDTBBT-3F:PC ${ }_{71} \mathrm{BM}$ and PDTBBT-4F:PC ${ }_{71} \mathrm{BM}$ devices.

Polymer	Leakage current at $-3 \mathrm{~V}\left(\mathrm{~mA} \mathrm{~cm}^{-2}\right)$	Rectification factor $(-3 \mathrm{~V}, 3 \mathrm{~V})$	μ_{h}^{a} $\left(10^{-4} \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}\right)$	μ_{e}^{a} $\left(10^{-4} \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}\right)$	μ_{h} / μ_{e}
PDTBBT-3F-BHJ	0.31	680	5.65 ± 0.17	4.18 ± 0.20	1.37
PDTBBT-4F-BHJ	0.74	112	4.12 ± 0.15	0.87 ± 0.23	4.80

${ }^{\text {a }}$ Average values and standard deviations from 6 devices.

Table S4. The coherence length (L_{c}) and full width at half-maximum (FWHM) along both OOP and IP direction of the neat PDTBBT-3F and PDTBBT-4F, and the corresponding polymers: $\mathrm{PC}_{71} \mathrm{BM}$ blend films devices (According to the Scherrer's equation, $\mathrm{L}_{\mathrm{C}}=2 \pi / \mathrm{fwhm}$)

Polymer	OOP			IP		
	100		010		100	
	FWHM $\left(\AA^{-1}\right)$	$\mathrm{L}_{\mathrm{C}}(\AA)$	FWHM $\left(\AA^{-1}\right)$	$\mathrm{L}_{\mathrm{C}}(\AA)$	$\mathrm{FWHM}\left(\AA^{-1}\right)$	$\mathrm{L}_{\mathrm{C}}(\AA)$
PDTBBT-3F	0.0424	148.1	0.296	21.2	0.0521	120.5
PDTBBT-4F	0.0580	108.3	0.171	36.8	0.0382	164.4
PDTBBT-3F-BHJ	0.0325	193.5	0.206	30.4	0.0344	182.6
PDTBBT-4F-BHJ	0.0464	135.2	0.278	22.6	0.0512	122.6

[^0]: ${ }^{\mathbf{a}}$ The average values and standard deviations of 8 devices are shown in parentheses.

