Electronic Supplementary Information (ESI)

Transforming Molecular Orientation of Crystalline Lamellae by the Degree of Multi-Fluorination within D-A Copolymers and its Effect on Photovoltaic Performance

Jianhong Gao^a, Wei Wang^a, Yanqi Hu^a, Chun Zhan^a, Shengqiang Xiao^{*a}, Xinhui Lu^{*b}, and Wei You^{* ac}

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology, Wuhan, 430070, P. R. China. E-mail: *E-mail:shengqiang@whut.edu.cn

^b Department of Physics, Chinese University of Hong Kong, Hong Kong, P. R. China. *E-mail: xhlu@phy.cuhk.edu.hk

^c Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States. *E-mail: wyou@unc.edu

The list of the content:

- 1. Materials
- 2. Measurements and instruments.
- 3. Fabrication and characterization of polymer solar cells.
- 4. ¹H, ¹³C-NMR and high resolution MALDI-TOF mass spectrometry of the compounds in this work (**Fig. S1- Fig. S17**)
- 5. Supplementary figures and tables:
 - a) TGA curves of the two copolymers at a heating rate of 10 °C min⁻¹ under nitrogen (Fig. S18).
 - b) Cyclic voltammogram curves of the two copolymers in thin film (Fig. S19).
 - c) *J-V* characteristics of polymers:PC₇₁BM PSCs in conventional architecture at different D:A weight ratio (**Fig. S20**).
 - d) Photovoltaic properties of Polymers:PC₇₁BM PSCs in conventional architecture at different D/A weight ratios (Table S1).
 - e) The optimized photovoltaic properties of PDTBBT-3F:PC₇₁BM = 1:2.5 and PDTBBT-4F:PC₇₁BM = 1:2 PSCs in conventional architecture with processing additives of DIO and DPE (Table S2).
 - f) Extinction coefficient spectra of BHJ blend films for optimum device based on the Polymers: PC₇₁BM prepared from *o*-DCB (Fig. S21).
 - g) $J^{0.5}$ vs V_{appl}-V_{bi}-V_{rs} plots for hole-only and electron-only devices of PDTBBT-3F and PDTBBT-4F blend films (**Fig. S22**)
 - h) Tapping-mode AFM height and phase images of the optimized BHJ blends (Fig. S23).
 - i) Physical parameters of PDTBBT-3F:PC₇₁BM and PDTBBT-4F:PC₇₁BM devices (Table S3).
 - j) The coherence length (L_C) and full width at half-maximum (FWHM) along both OOP and IP direction of the neat PDTBBT-3F and PDTBBT-4F, and the corresponding polymer:PC₇₁BM blend films (**Table S4**).

1. Materials

4,7-dibromo-5,6-difluorobenzo[c][1,2,5]thiadiazole and 4,7-dibromo-5-fluorobenzo[c][1,2,5]thiadiazole were purchased from Derthon. [6,6]-Phenyl C₇₁–butyric acid methyl ester (PC₇₁BM) was purchased from Solenne. Other reagents were used as purchased from JK Chemical and Energy Chemical. Anhydrous THF was obtained by distillation over sodium/benzophenone under nitrogen atmosphere.

2. Measurements and Instruments

¹H and ¹³C NMR spectrum were recorded on a Bruker AV500 at 500 MHz using deuterated chloroform (CDCl₃) as the solvent. The molecular weights of two polymers were determined by high temperature gel-permeation chromatography (GPC) with trichlorobenzne as the eluent at 150 °C relative to a polystyrene standard on an Agilent PL-GPC 220 system. Thermogravimetric analysis measurements were carried out on NETZSCH (STA449F3) at a heating rate of 10 °C min⁻¹ under nitrogen. Room temperature UV-vis spectra of polymer solutions and films were recorded on a SHIMADZU UV-1750 spectrophotometer. The dilute solutions were prepared as followings: we first prepared the polymer solutions with a concentration of 10 mg mL⁻¹ in dichlorobenzene, and then took 40 µL of them with a micro syringe and injected into appropriate amount of dichlorobenzene (volume with dichlorobenzene to 4 mL) to attain a concentration of 1×10^{-5} mg mL⁻¹. Solution UV-Vis absorption spectra at elevated temperatures were collected on Perkin Elmer Lambda 750 UV/VIS/NIR Spectrometer. The temperature-dependent experiments were measured through stepwise increasing temperature from room temperature to fully disaggregate temperature (such as 100 °C). Cyclicvoltammetry (CV) experiments were performed with CHI 660D analyzer. All CV measurements were carried out in 0.1 M tetrabutylammonium hexafluorophosphate (Bu₄NPF₆) in anhydrous acetonitrile with a conventional three-electrode configuration employing a platinum wire as a counter electrode, platinum electrode coated with a thin polymer film as a working electrode, and Ag/Ag⁺ electrode as a reference electrode at a scan rate of 80 mV s⁻¹. The atomic force microscopy (AFM) images (5.0 μ m × 5.0 μ m) were obtained through tapping mode on Multimode 8 SPM at ambient condition. RTESPA (0.01 - 0.025 ohm-cm Antimony (n) doped silicon) tips with a spring constant of 20 - 80 N m⁻¹ and a frequency of 305 - 356 kHz were used in imaging. The GIWAXS measurements of the pristine polymers and polymer:fullerene blend films were conducted at 23 A SWAXS beamline of a superconductor wiggler at the National Synchrotron Radiation Research Center, Hsinchu, Taiwan, using 10 keV beam incident at 0.15° and a C9728DK area detector.

3. Fabrication and Characterization of Polymer Solar Cells

The PSC devices were fabricated with the conventional configuration of ITO/PEDOT:PSS/donor (PDTBBT-3F or PDTBBT-4F):PC₇₁BM /Ca (~ 20 nm)/Al (80 nm). Prior to be used, indium tin oxide glass substrates were sequentially cleaned with distilled water, acetone, iso-propanol and were treated by UV-Ozone. For BHJ devices, poly(3,4-thylenedioxythiophene):polystyrenesulfonic acid (PEDOT:PSS) was spin-coated onto the ITO substrate and annealed at 150 °C for 20 min. To prepare the BHJ films, the polymers of PDTBBT-3F or PDTBBT-4F (10 mg mL⁻¹) were blended with PC₇₁BM in *o*-dichlorobenzene (*o*-DCB), respectively. BHJ films were spin-cast on the top of the PEDOT:PSS layers in a N₂ filled glove box. Subsequently, Ca (20 nm) and Al (80 nm) were sequentially deposited on the top of the active layers as the cathode at a pressure of 2×10^{-6} mbar through a shadow mask that defines 8 devices with each active area of 0.09 cm².

Current-voltage measurements were carried out in a glovebox under AM 1.5 G irradiation (100 mW cm⁻²) from a 450 W solar simulator (Newport 94023A-U) calibrated by a NREL certified standard silicon cell. Current versus potential (*J-V*) curves were recorded with a Keithley 2420 digital source meter. For external quantum efficiency (EQE) tests, the devices were transferred by a self-made testing box from the glovebox into the chamber of a 7-SCSpec spectral performance of solar cell test system consisting of a 500 watt SCS028-7ILX500 xenon light source, a 7ISW301 vertical grating spectrometer, a 71FW6 filter wheel, a SR810 lock-in amplifier. The calibration of the incident monochromatic light was carried out with a Hamamatsu S1337-1010 BQ Silicon photodetector.

The SCLC *J-V* curves were obtained in the dark from the electron-only and hole-only devices of ITO/ZnO/active-layer/Ca/A1 and ITO/PEDOT:PSS/active-layer/MoO₃/Ag, respectively. The electron and hole mobility were calculated using the Mott-Gurney square law, $J = (9/8)\varepsilon_0\varepsilon_r\mu(V^2/L^3)$, where ε_0 is vacuum permittivity, ε_r is the dielectric constant of the polymer used, μ is the charge

carrier mobility, V is the effective applied voltage, and L is the thickness of the active film in the device.

4. ¹H, ¹³C-NMR and high resolution MALDI-TOF mass spectrometry of new compounds in this work

Fig. S1 ¹H NMR of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)dithiophene (1).

Fig. S2 ¹³C NMR of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)dithiophene (1).

Fig. S4 ¹H NMR of 5,5'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene) bis(2,4-dibromothiophene)

(2).

Fig. S5 ¹³C NMR of 5,5'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene) bis(2,4-dibromothiophene)

Fig. S6 MALDI-TOF mass spectrometry of 5,5'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene) bis-(2,4-dibromothiophene) (2).

Fig. S8 ¹³C NMR of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene) bis(3-bromothiophene) (3).

Fig. S9 MALDI-TOF mass spectrometry of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis-(3-bromothiophene) (3).

Fig. S10 ¹H NMR of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis(3-fluorothiophene) (4).

Fig. S11 ¹³C NMR of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis(3-fluorothiophene) (4).

Fig. S12 ¹⁹F NMR of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis(3-fluorothiophene) (4).

Fig. S13 MALDI-TOF mass spectrometry of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis-(3-fluorothiophene) (4).

Fig. S14 ¹H NMR of (5,5'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis-(4-fluorothiophene-5,2-diyl))bis(trimethylstannane) (5).

Fig. S16 ¹⁹F NMR of (5,5'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis-(4-fluorothiophene-5,2-diyl))bis(trimethylstannane) (5).

Fig. S17 MALDI-TOF mass spectrometry of (5,5'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis-(4-fluorothiophene-5,2-diyl))bis(trimethylstannane) (5).

5. Supplementary Figures and Tables

Fig. S18. TGA curves of PDTBBT-3F and PDTBBT-4F at heating rate of 10 $^{\circ}$ C min⁻¹ under N₂.

Fig. 19 Cyclic voltammograms of the polymers in thin film (drop cast from 3 mg mL⁻¹ chloroform solution) measured in acetonitrile (0.1 M Bu₄NPF₆) at a scan rate of 80 mV s⁻¹.

Fig. S20 *J-V* characteristics of a) **PDTBBT-3F** and b) **PDTBBT-4F** based PSCs with different polymers:PC₇₁BM blend ratios (solvent: *o*-DCB).

devices)						
Polymer	D:A ratio (w/w)	Thickness (nm)	<i>V_{oc}</i> (V)	J_{sc} (mA cm ⁻²)	FF (%)	PCE (%)
PDTBBT-3F	1:2	201 ± 2	0.801 (0.796 ± 0.008)	16.80 (16.52 ± 0.32)	55.3 (54.8 ± 1.0)	7.39 (7.16 ± 0.25)
	1:2.5	205 ± 3	0.804 (0.798 ± 0.009)	17.35 (17.12 ± 0.30)	$\begin{array}{c} 59.8\\(59.4\pm0.9)\end{array}$	8.33 (8.15 ± 0.21)
	1:3	203 ± 3	0.768 (0.763 \pm 0.007)	16.12 (15.89 ± 0.26)	$52.8 \\ (52.4 \pm 0.8)$	6.58 (6.41 ± 0.19)
	1:1	178 ± 2	0.803 (0.798 ± 0.008)	12.64 (12.42 ± 0.28)	48.6 (48.1 ± 0.8)	4.95 (4.79 ± 0.23)
PDTBBT-4F	1:2	185 ± 2	0.817	14.25	50.7	5.92

 (14.03 ± 0.24)

11.36

 (11.12 ± 0.30)

 (5.79 ± 0.16)

4.33

 (4.18 ± 0.20)

 (50.3 ± 1.0)

47.3

 (46.8 ± 0.9)

 (0.812 ± 0.007)

0.812

 (0.806 ± 0.01)

-

1:3

 190 ± 3

Table S1. Photovoltaic properties of Polymers:PC₇₁BM PSCs in conventional architecture at different D/A weight ratios ((parenthesized with the average values and standard deviations over 15 devices)

Table S2 The optimized photovoltaic properties of PDTBBT-3F:PC₇₁BM = 1:2.5 and PDTBBT-4F:PC₇₁BM = 1:2 PSCs in conventional architecture with processing additives of DIO and DPE (v/v, *o*-DCB).

	A 11.	V_{oc}	J_{sc}	FF	PCE a	
BHJ	Additive	(V)	$(mA cm^{-2})$	(%)	(%)	
	W/O	0.804	17.35	59.8	8.33	
		(0.798 ± 0.009)	(17.12 ± 0.30)	(59.4 ± 0.9)	(8.15 ± 0.21)	
	10/ DIO	0.785	15.02	49.8	5.87	
	1% DIO	(0.779 ± 0.008)	(14.81 ± 0.25)	(49.3 ± 0.9)	(5.73 ± 0.19)	
	2% DIO	0.793	15.98	52.6	6.64	
		(0.786 ± 0.008)	(15.76 ± 0.27)	(52.1 ± 0.7)	(6.47 ± 0.17)	
PDTBBT-3F:PC71BM	1 3% DIO	0.764	14.56	46.4	5.13	
= 1:2.5		(0.758 ± 0.007)	(14.34 ± 0.26)	(45.8 ± 0.8)	(4.95 ± 0.23)	
	1% DPE	0.814	16.33	51.2	6.81	
		(0.808 ± 0.008)	(16.07 ±0.30)	(52.4 ± 1.0)	(6.59 ± 0.25)	
	20/ DDE	0.822	16.65	53.5	7.26	
	2% DPE	(0.815 ± 0.01)	(16.39 ±0.33)	(53.0 ± 0.9)	(7.03 ± 0.27)	
	3% DPE	0.809	15.79	48.9	6.25	
		(0.803 ±0.009)	(15.56 ±0.28)	(48.3 ± 0.8)	(6.08 ± 0.20)	
	W/O	0.817	14.25	50.7	5.92	
		(0.812 ± 0.007)	(14.03 ± 0.24)	(50.3 ± 1.0)	(5.79 ± 0.16)	
		0.779	11.93	43.8	4.07	
	1% DIO	(0.772 ± 0.008)	(11.70 ± 0.27)	(43.3 ± 0.9)	(3.92 ± 0.18)	
	20/ DIO	0.782	12.78	46.2	4.61	
	2% DIO	(0.777 ± 0.009)	(12.53 ± 0.29)	(45.7 ± 0.8)	(4.48 ± 0.19)	
PDTBBT-4F:PC71BM	20/ DIO	0.743	9.87	42.8	3.13	
= 1:2	3% DIO	(0.738 ± 0.007)	(9.69 ± 0.23)	(42.2 ± 0.9)	(2.98 ± 0.17)	
	1% DPE	0.760	13.02	43.6	4.31	
		(0.752 ± 0.01)	(12.75 ± 0.32)	(43.0 ± 0.9)	(4.14 ± 0.23)	
	20% DDE	0.778	13.62	45.6	4.83	
	2% DPE	(0.772 ± 0.01)	(13.38 ± 0.30)	(45.1 ± 0.9)	(4.62 ± 0.25)	
	3% DDE	0.702	10.87	39.7	3.02	
	3% DPE	(0.695 ± 0.009)	(10.66 ± 0.28)	(39.2 ± 0.8)	(2.89 ± 0.20)	

^a The average values and standard deviations of 8 devices are shown in parentheses.

Figure S21. Extinction coefficient spectra of BHJ blend films for optimum device based on the Polymers: PC₇₁BM prepared from *o*-DCB.

Fig. S22 $J^{0.5}$ vs V_{appl}-V_{bi}-V_{rs} plots for a) hole-only and b) electron-only devices of **PDTBBT-3F** and **PDTBBT-4F** blend films.

Fig. S23 Tapping-mode AFM height (a and b) and phase (c and d) images of PDTBBT-3F:PC₇₁BM (a and c) and PDTBBT-4F:PC₇₁BM (b and d) blends, respectively.

Table S3. Physical parameters of PDTBBT-3F:PC71BM and PDTBBT-4F:PC71BM devices.

Polymer	Leakage current at -3V (mA cm ⁻²)	Rectification factor (-3V, 3V)	$\mu_h^{\mathbf{a}}$ (10 ⁻⁴ cm ² V ⁻¹ s ⁻¹)	$\mu_e^{\mathbf{a}}$ (10 ⁻⁴ cm ² V ⁻¹ s ⁻¹)	μ_h/μ_e
PDTBBT-3F-BHJ	0.31	680	5.65 ± 0.17	4.18 ± 0.20	1.37
PDTBBT-4F-BHJ	0.74	112	4.12 ± 0.15	0.87 ± 0.23	4.80

^aAverage values and standard deviations from 6 devices.

		00	IP			
Polymer	100		010		100	
	FWHM (Å ⁻¹)	$L_{C}(\text{\AA})$	FWHM (Å ⁻¹)	$L_{C}(\text{\AA})$	FWHM (Å-1)	L _C (Å)
PDTBBT-3F	0.0424	148.1	0.296	21.2	0.0521	120.5
PDTBBT-4F	0.0580	108.3	0.171	36.8	0.0382	164.4
PDTBBT-3F-BHJ	0.0325	193.5	0.206	30.4	0.0344	182.6
PDTBBT-4F-BHJ	0.0464	135.2	0.278	22.6	0.0512	122.6

Table S4. The coherence length (L_C) and full width at half-maximum (FWHM) along both OOP and IP direction of the neat PDTBBT-3F and PDTBBT-4F, and the corresponding polymers:PC₇₁BM blend films devices (According to the Scherrer's equation, $L_C = 2\pi/fwhm$)