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1. Materials

4,7-dibromo-5,6-difluorobenzo[c][1,2,5]thiadiazole and 4,7-dibromo-5-fluorobenzo|c][1,2,5]-
thiadiazole were purchased from Derthon. [6,6]-Phenyl C7:—butyric acid methyl ester (PC7:.BM)
was purchased from Solenne. Other reagents were used as purchased from JK Chemical and Energy
Chemical. Anhydrous THF was obtained by distillation over sodium/benzophenone under nitrogen
atmosphere.

2. Measurements and Instruments

!4 and C NMR spectrum were recorded on a Bruker AV500 at 500 MHz using deuterated
chloroform (CDCIs) as the solvent. The molecular weights of two polymers were determined by
high temperature gel-permeation chromatography (GPC) with trichlorobenzne as the eluent at 150
°C relative to a polystyrene standard on an Agilent PL-GPC 220 system. Thermogravimetric
analysis measurements were carried out on NETZSCH (STA449F3) at a heating rate of 10 °C min™
under nitrogen. Room temperature UV—vis spectra of polymer solutions and films were recorded on
a SHIMADZU UV-1750 spectrophotometer. The dilute solutions were prepared as followings: we
first prepared the polymer solutions with a concentration of 10 mg mL™ in dichlorobenzene, and
then took 40 pL of them with a micro syringe and injected into appropriate amount of
dichlorobenzene (volume with dichlorobenzene to 4 mL) to attain a concentration of 1 x 10° mg
mL. Solution UV-Vis absorption spectra at elevated temperatures were collected on Perkin Elmer
Lambda 750 UV/VIS/NIR Spectrometer. The temperature-dependent experiments were measured
through stepwise increasing temperature from room temperature to fully disaggregate temperature
(such as 100 °C). Cyclicvoltammetry (CV) experiments were performed with CHI 660D analyzer.
All CV measurements were carried out in 0.1 M tetrabutylammonium hexafluorophosphate
(BusNPFs) in anhydrous acetonitrile with a conventional three-electrode configuration employing a
platinum wire as a counter electrode, platinum electrode coated with a thin polymer film as a
working electrode, and Ag/Ag* electrode as a reference electrode at a scan rate of 80 mV s™. The
atomic force microscopy (AFM) images (5.0 um x 5.0 pm) were obtained through tapping mode on
Multimode 8 SPM at ambient condition. RTESPA (0.01 - 0.025 ohm-cm Antimony (n) doped

silicon) tips with a spring constant of 20 - 80 N m™ and a frequency of 305 - 356 kHz were used in
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imaging. The GIWAXS measurements of the pristine polymers and polymer:fullerene blend films
were conducted at 23 A SWAXS beamline of a superconductor wiggler at the National Synchrotron
Radiation Research Center, Hsinchu, Taiwan, using 10 keV beam incident at 0.15° and a C9728DK
area detector.

3. Fabrication and Characterization of Polymer Solar Cells

The PSC devices were fabricated with the conventional configuration of ITO/PEDOT:PSS/donor
(PDTBBT-3F or PDTBBT-4F):PC7:.BM /Ca (~ 20 nm)/Al (80 nm). Prior to be used, indium tin
oxide glass substrates were sequentially cleaned with distilled water, acetone, iso-propanol and
were treated by UV-Ozone. For BHJ devices, poly(3,4-thylenedioxythiophene):polystyrenesulfonic
acid (PEDOT:PSS) was spin-coated onto the ITO substrate and annealed at 150 °C for 20 min. To
prepare the BHJ films, the polymers of PDTBBT-3F or PDTBBT-4F (10 mg mL™) were blended
with PC7:BM in o-dichlorobenzene (0-DCB), respectively. BHJ films were spin-cast on the top of
the PEDOT:PSS layers in a N2 filled glove box. Subsequently, Ca (20 nm) and Al (80 nm) were
sequentially deposited on the top of the active layers as the cathode at a pressure of 2 x 10 mbar
through a shadow mask that defines 8 devices with each active area of 0.09 cm?.

Current-voltage measurements were carried out in a glovebox under AM 1.5 G irradiation (100
mW cm2) from a 450 W solar simulator (Newport 94023A-U) calibrated by a NREL certified
standard silicon cell. Current versus potential (J-V) curves were recorded with a Keithley 2420
digital source meter. For external quantum efficiency (EQE) tests, the devices were transferred by a
self-made testing box from the glovebox into the chamber of a 7-SCSpec spectral performance of
solar cell test system consisting of a 500 watt SCS028-71LX500 xenon light source, a 7ISW301
vertical grating spectrometer, a 71FW6 filter wheel, a SR810 lock-in amplifier. The calibration of
the incident monochromatic light was carried out with a Hamamatsu S1337-1010 BQ Silicon
photodetector.

The SCLC J-V curves were obtained in the dark from the electron-only and hole-only devices of
ITO/ZnO/active-layer/Ca/Al and ITO/PEDOT:PSS/active-layer/MoO3z/Ag, respectively. The
electron and hole mobility were calculated using the Mott-Gurney square law, J = (9/8)eoequ(VZ/L3),

where € is vacuum permittivity, & iS the dielectric constant of the polymer used, u is the charge
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carrier mobility, V is the effective applied voltage, and L is the thickness of the active film in the

device.

4. 1H, BC-NMR and high resolution MALDI-TOF mass spectrometry of new compounds in
this work
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Fig. S1 'H NMR of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)dithiophene (1).
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Fig. S2 13C NMR of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)dithiophene (1).
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Fig. S3 MALDI-TOF mass spectrometry of
2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)dithiophene (1).
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Fig. S4 'H NMR of 5,5'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene) bis(2,4-dibromothiophene)
(2).
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Fig. S5 3C NMR of 5,5'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene) bis(2,4-dibromothiophene)
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Fig. S6 MALDI-TOF mass spectrometry of 5,5'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene) bis-
(2,4-dibromothiophene) (2).
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Fig. S8 13C NMR of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene) bis(3-bromothiophene) (3).
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Fig. S9 MALDI-TOF mass spectrometry of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis-
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(3-bromothiophene) (3).
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Fig. S10 'H NMR of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis(3-fluorothiophene) (4).
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Fig. S11 C NMR of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis(3-fluorothiophene) (4).
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Fig. S12 *F NMR of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis(3-fluorothiophene) (4).
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Fig. S13 MALDI-TOF mass spectrometry of 2,2'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis-
(3-fluorothiophene) (4).
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Fig. S14 'H NMR of (5,5'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis-
(4-fluorothiophene-5,2-diyl))bis(trimethylstannane) (5).
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Fig. S15 3C NMR of (5,5'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis-
(4-fluorothiophene-5,2-diyl))bis(trimethylstannane) (5).
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Fig. S16 °F NMR of (5,5'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis-
(4-fluorothiophene-5,2-diyl))bis(trimethylstannane) (5).
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Fig. S17 MALDI-TOF mass spectrometry of (5,5'-(2,5-bis((2-octyldodecyl)oxy)-1,4-phenylene)bis-
(4-fluorothiophene-5,2-diyl))bis(trimethylstannane) (5).

5. Supplementary Figures and Tables
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Fig. S18. TGA curves of PDTBBT-3F and PDTBBT-4F at heating rate of 10 °C min! under N.
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Fig. 19 Cyclic voltammograms of the polymers in thin film (drop cast from 3 mg mL™ chloroform

solution) measured in acetonitrile (0.1 M BusNPFe) at a scan rate of 80 mV s.
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Fig. S20 J-V characteristics of a) PDTBBT-3F and b) PDTBBT-4F based PSCs with different
polymers:PC7:BM blend ratios (solvent: 0-DCB).
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Table S1. Photovoltaic properties of Polymers:PC71BM PSCs in conventional architecture at

different D/A weight ratios ((parenthesized with the average values and standard deviations over 15

devices)
Polvimer D:Aratio Thickness Voc Jsc FF PCE
Y (nm) V) (MA cm?) (%) (%)
_ 0.801 16.80 55.3 7.39
T (0.796+0.008) (1652+0.32) (54.8+10) (7.160.25)
20543 0.804 17.35 5.8 8.33
PDTBBT-3F = (0798+0.009) (17.12+0.30) (59.4+09) (8.15+0.21)
20343 0.768 16.12 52.8 6.58
=% (0.763+0.007) (15.89+0.26) (52.4+0.8) (6.41+0.19)
784 2 0.803 12.64 48.6 4.95
T (0.798+0.008) (12.42+028) (48.1+08) (4.79+0.23)
0.817 14.25 50.7 5.92
- +
PDTBBT-4F 18552 0812+0007) (14.03£024) (503+10) (5.790.16)
160+ 3 0.812 11.36 47.3 4.33
= (0.806 +0.01)  (11.12+0.30) (46.8+0.9) (4.18 +0.20)
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Table S2 The optimized photovoltaic properties of PDTBBT-3F.:PC71BM

1:25 and

PDTBBT-4F:PC7:BM = 1:2 PSCs in conventional architecture with processing additives of DIO

and DPE (v/v, 0-DCB).

. Voc Jsc FF PCE @
BHJ Additive V) (mA cm?) (%) (%)
WI/O 0.804 17.35 59.8 8.33
(0.798 £0.009) (17.12+£0.30) (59.4+£0.9) (8.15+0.21)
1% DIO 0.785 15.02 49.8 5.87
(0.779£0.008) (14.81+£0.25) (49.3£0.9) (5.73+0.19)
206 DIO 0.793 15.98 52.6 6.64
(0.786 £0.008) (15.76 £0.27) (52.1+£0.7) (6.47+£0.17)
PDTBBT-3F:PC71BM 3% DIO 0.764 14.56 46.4 5.13
=1:25 (0.758 £ 0.007) (14.34+£0.26) (45.8+0.8) (4.95%0.23)
1% DPE 0.814 16.33 51.2 6.81
(0.808 £ 0.008) (16.07 £0.30) (52.4+1.0) (6.59+0.25)
20 DPE 0.822 16.65 53.5 7.26
(0.815+£0.01) (16.39+0.33) (53.0+0.9) (7.03+£0.27)
3% DPE 0.809 15.79 48.9 6.25
(0.803 £0.009)  (15.56 +0.28) (48.3+£0.8) (6.08 £0.20)
W/O 0.817 14.25 50.7 5.92
(0.812£0.007) (14.03+0.24) (50.3%+1.0) (5.790.16)
1% DIO 0.779 11.93 43.8 4,07
(0.772£0.008) (11.70£0.27) (43.3%£0.9) (3.92+0.18)
20 DIO 0.782 12.78 46.2 4.61
(0.777 £0.009) (12.53+0.29) (45.7+0.8) (4.48%0.19)
PDTBBT-4F:PC71BM 3% DIO 0.743 9.87 42.8 3.13
=1:2 (0.738+£0.007) (9.69+0.23) (42.2+0.9) (2.98+0.17)
1% DPE 0.760 13.02 43.6 4.31
(0.752£0.01) (12.75+0.32) (43.0+x0.9) (4.14£0.23)
20 DPE 0.778 13.62 45.6 4.83
(0.772+£0.01) (13.38+0.30) (45.1+0.9) (4.62+0.25)
3% DPE 0.702 10.87 39.7 3.02
(0.695+£0.009) (10.66+0.28) (39.2+0.8) (2.89+0.20)

@ The average values and standard deviations of 8 devices are shown in parentheses.
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Figure S21. Extinction coefficient spectra of BHJ blend films for optimum device based on the

Polymers: PC7:.BM prepared from o-DCB.
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Fig. S22 J%5 vs Vappi-Vii-Vis plots for a) hole-only and b) electron-only devices of PDTBBT-3F and
PDTBBT-4F blend films.
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Fig. S23 Tapping-mode AFM height (a and b) and phase (c and d) images of PDTBBT-3F:PC7:BM
(aand c) and PDTBBT-4F:PC7:BM (b and d) blends, respectively.

Table S3. Physical parameters of PDTBBT-3F:PC7:.BM and PDTBBT-4F:PC7:BM devices.

Polvmer Leakage current Rectification Hnd e /

y at-3V (mAcm?) factor (-3V, 3V) (104cm?V1ist) (10*cm?Vvis?) Hn/He
PDTBBT-3F-BHJ 0.31 680 5.65+0.17 4.18 +0.20 1.37
PDTBBT-4F-BHJ 0.74 112 4.12+0.15 0.87+0.23 4.80

aAverage values and standard deviations from 6 devices.
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Table S4. The coherence length (Lc) and full width at half-maximum (FWHM) along both OOP
and IP direction of the neat PDTBBT-3F and PDTBBT-4F, and the corresponding
polymers:PC71BM blend films devices (According to the Scherrer’s equation, Lc = 2n/fwhm)

OOP IP

Polymer 100 010 100

FWHM(AY)  Lc(A) FWHM @AY Lc(A) FWHM @AY  Lc(A)

PDTBBT-3F 0.0424 148.1 0.296 21.2 0.0521 120.5
PDTBBT-4F 0.0580 108.3 0.171 36.8 0.0382 164.4
PDTBBT-3F-BHJ 0.0325 193.5 0.206 30.4 0.0344 182.6
PDTBBT-4F-BHJ 0.0464 135.2 0.278 22.6 0.0512 122.6
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