Supporting Information

The influence of tetraphenylethylene moieties on the emissive properties of dipyrrolonaphthyridinediones

Bartłomiej Sadowski,^a Shih-Hao Su,^b Ta-Chun Lin,^b Trevor D. Lohrey,^c Irena Deperasińska,^{*d} Pi-Tai Chou^{*b} and Daniel T. Gryko^{*a}

^a Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland, E-mail: daniel@icho.edu.pl

^b Department of Chemistry, National Taiwan University, 1 Roosevelt Road Section 4, Taipei 106, Taiwan, E-mail: chop@ntu.edu.tw

^c Department of Chemistry, University of California, Berkeley, 420 Latimer Hall, Berkeley, CA, United States, and Chemical Sciences Division, Lawrence Berkeley National Laboratory,1 Cyclotron Road, Berkeley, CA, United States, E-mail: tdlohrey@berkeley.edu

^d Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland, E-mail: deper@ifpan.edu.pl

Table of contents

2
3

1. Cyclic voltammetry

Figure S1. Cyclic voltammograms of 1 (blue) and 2 (red).

Table S1. Summary of electrochemical^[a] properties of derivatives 1 and 2.

)	Reduction			Oxidation	
Dye		$E_{\rm red2}$ [V]	E _{red1} [V]	$E^{1/2}_{red1}$ [V]	E_{ox1} [V]	E_{ox2} [V]
1	$E_{\rm pa}$	-1.482	-1.034	1 090	1.071	1.207
	$\dot{E_{pc}}$	-1.582	-1.127	1.080	0.985	1.122
2	$E_{\rm pa}$	-	-1.033	1 090	1.189	1.284
	$\dot{E_{pc}}$	-1.620	-1.128	1.080	1.044	-

[[]a] Measurements conditions: compound (c = 0.1 - 0.2 mM); electrolyte (NBu₄ClO₄, c = 0.1 M); solvent: dry, degassed dichloromethane; potential sweep rate: 100 mV/s; working electrode: GC; auxiliary electrode: Pt wire; reference electrode: Ag/AgCl/NaCl_{sat}; all measurements were carried out at room temperature and under Ar atmosphere;

2. Computational details

Table S2. Transition energies and oscillator strengths (*f*) for molecular structures of **1** and **2** optimized in S₀ and S₁ electronic states (for the coordinates and vibrational frequencies, see Tables S5-S8). Structures were simplified by replacing alkyl chains with hydrogen. α – rotation angle of substituent plane in relations to the DPND core (in the case of TPE-DPND this angle concerns to the ring bonded with DPND), transition energy describes the absorption and fluorescence for S₀ and S₁ optimized structures, respectively, k_r is rate constant for radiative transition evaluated computationally. In last columns illustration for the geometry difference between C_i and C_2 isomers.

Molecule	Symmetry	<i>α</i> / °	Transition energy /nm	f	E _{HOMO} / eV	E _{LUMO} / eV	
		S	S ₀ state				\rightarrow
TPE-DPND (1)	C_i	43.5	628.1	1.0117	-4.988	-2.801	
	C_2	43.5	624.3	1.0329	-4.994	-2.797	
Ar-DPND (2)	C_i	45.4	543.9	0.7806	-5.186	-2.821	
	C_2	44.7	543.7	0.7875	-5.184	-2.823	۲ (۱
DPND	Ci	-	471.3	0.4560	-5.527	-2.894	C.
		Ś	S ₁ state				
					$10^{-8} \cdot k_{\rm r}$ [s ⁻¹]		+ +
TPE-DPND (1)	C_i	34.0	705.5	1.2437	1.67		C_i
	C_2	35.1	702.6	1.0810	1.46		
Ar-DPND (2)	C_i	35.9	599.5	0.8421	1.56		A-A
	C_2	35.4	598.4	0.8458	1.57		
DPND	C_i	-	510.9	0.4586	1.17		

Table S3. HOMO and LUMO orbitals of 1 and 2. Electronic configuration (HOMO, LUMO) describes $S_0 \rightarrow S_1$ and $S_1 \rightarrow S_0$ transitions.

Results of calculations for 1 and 2 are consistent with previously obtained results for DPND [1] and related molecules [2,3]. The electronic transitions between the S₀ and S₁ in molecules 1 and 2 are $\pi\pi^*$ transitions described by (HOMO, LUMO) configuration. HOMO and LUMO retain the features of the orbital of parent DPND molecule with some extension of π system on the substituents groups. The substitution of DPND by -Ar and -TPE at positions 3 and 9 mainly affects HOMO energy, causing a red shift in absorption and fluorescence. At the same time, the oscillator strength of the transition increases. In the excited state, the angle between the planes of the substituents and the central DPND plane decreases, which is accompanied by a slight increase in the strength of the transition oscillator.

Figure S2. Restricted internal rotation of single -Ar group in Ar-DPND (2) molecule; α – rotation angle of substituent plane in relations to the DPND core plane. Inserts show the structure of a molecule in two minima and for two potential barriers. Two minima correspond to C_i and C_2 isomers. The rotation angle of the second substituent is constant (45°).

The restricted internal rotation of the substituent at 1 and 2 occurs in a potential with two minima separated by a small barrier. These minima correspond to C_i and C_2 isomers. The height of the

barriers is controlled by steric factors, small for the perpendicular position (up to the DPND plane) position of the substituent and large for the parallel arrangement.

Figure S3. Internal rotation of both TPE groups in the molecule **1**, maintaining the symmetry of the molecule during rotation. With the perpendicular setting of substituents, the lowest excited state becomes the CT state with the zero oscillator strength. The inserts show the wavelength and oscillator strength of the transition as well as the electronic configurations corresponding to transitions in two extreme cases.

Table S4. Calculated Franck-Condon factors for vibronic transitions from $|S_1,0\rangle$ state to $|S_0, n \cdot hv_i + m \cdot hv_k + ... \rangle$ states in **2** (n, m,... quantum numbers of hv_i , hv_k , ... modes).

Initial vibronic		Energy of final	FC	
state in excited	Final vibronic final	vibronic state	factor	
S ₁ electronic	state in ground S_0	in relation to		
state	electronic state	(0,0) transition		Shapes of some vibrations active in $S_1 \rightarrow S_0$ transition
<0	0>	0	0.663	
	3^1>	-43	0.565	
	5^1>	-52	0.677	
	6^1>	-85	0.228	
	3^2>	-85	0.240	
	5^1;3^1>	-95	0.576	3
	5^2>	-105	0.345	- All
	6^1;3^1>	-127	0.195	
	3^3>	-128	0.068	
	6^1;5^1>	-137	0.232	Johner
	5^1;3^2>	-138	0.245	P
	9^1>	-146	0.147	7 6 5
	5^2;3^1>	-147	0.293	To-
	5^3>	-157	0.117	
	6^2>	-169	0.039	
	6^1;3^2>	-170	0.083	Frank
	6^1;5^1;3^1>	-180	0.198	
	5^1;3^3>	-180	0.069	6
	9^1;3^1>	-189	0.126	. Sec
	6^1;5^2>	-189	0.118	
	5^2;3^2>	-190	0.125	
	13^1>	-196	0.043	
	9^1;5^1>	-199	0.151	
	5^3;3^1>	-200	0.100	~)
	5^4>	-209	0.030	NY a
	6^2;3^1>	-212	0.033	
	6^1;3^3>	-213	0.024	
	6^2;5^1>	-222	0.040	A A A A A A A A A A A A A A A A A A A
	6^1;5^1;3^2>	-222	0.085	The second se
	9^1;6^1>	-231	0.051	13
	9^1;3^2>	-232	0.054	ST &
	6^1;5^2;3^1>	-232	0.101	
	5^2;3^3>	-233	0.035	Catatot
	13^1;3^1>	-239	0.036	
	9^1;5^1;3^1>	-242	0.128	
	6^1;5^3>	-242	0.040	<u>20</u>
	5^3;3^2>	-242	0.042	
	13^1;5^1>	-248	0.044	

9^1;5^2>	-251	0.077	
5^4;3^1>	-252	0.025	
6^2;5^1;3^1>	-264	0.034	
6^1;5^1;3^3>	-265	0.024	
9^1;6^1;3^1>	-274	0.043	
6^2;5^2>	-274	0.020	
6^1;5^2;3^2>	-275	0.043	
9^1;6^1;5^1>	-283	0.052	John Start
9^1;5^1;3^2>	-284	0.055	
6^1;5^3;3^1>	-284	0.034	a 19 86

Figure S4. Simulation of fluorescence spectrum of **2** on the base of DFT and TDFT/6-31G(d,p) optimisations of **2** in ground S_0 and electronic excited S_1 states (see Table S8, S9 and Figure S5). Calculated energy of (0,0) transition is 17488 cm⁻¹ (571.8 nm). Description of Franck-Condon factors in Table S4.

Table S5. Energies and oscillator strengths of electronic transition for different dimers of DPND. These dimers are formed by removing the monomer pairs from the DPND crystal [1]. At the top of the table, a symbolic description of HOMO and LUMO dimers as a combination of HOMO and LUMO, located on both monomers.

The four types of dimers removed from the DPND crystal are systems with low or zero oscillator strengths for the transition between the states S_0 and S_1 , which makes the DPND ACQ-molecule. In the case of two dimers, the transition between S_0 and S_1 is an intermolecular CT transition, *i.e.* HOMO (monomer 2) \rightarrow LUMO (monomer 1), in which the CT state has a high dipole moment.

	Table S6.	Cartesian	coordinates	of S ₀ a	and S_1	for o	ptimized	structures	of 1.
--	-----------	-----------	-------------	---------------------	-----------	-------	----------	------------	-------

1								
		S_0				S	1	
	atom	х	у	Z	atom	х	у	Z
	Н	-14.9974	1.2589	-0.1925	Н	-15.0667	0.9173	-0.0295
	С	-13.9185	1.2065	-0.0796	С	-13.9847	0.9417	0.0603
	Н	-13.9607	-0.6143	1.0750	Н	-13.8586	-0.9691	1.0528
	Н	-13.5475	3.0219	-1.1832	Н	-13.7830	2.8680	-0.8888
	С	-13.3358	0.1540	0.6286	С	-13.3053	-0.1193	0.6637
	С	-13.1043	2.1961	-0.6339	С	-13.2638	2.0376	-0.4192
	Н	-10.8230	-4.4356	-2.4407	Н	-10.5466	-4.2392	-2.7744

Н	-9.5978	-4.6971	-0.2908	Н	-9.2992	-4.5950	-0.6516
С	-10.4415	-3.5625	-1.9193	С	-10.2173	-3.3883	-2.1854
С	-11.9512	0.0847	0.7715	С	-11.9179	-0.0918	0.7756
Н	-11.1513	-2.1627	-3.3981	Н	-11.0186	-1.9235	-3.5507
С	-11.7206	2.1335	-0.4797	С	-11.8772	2.0730	-0.2943
С	-9.7526	-3.7085	-0.7138	С	-9.5152	-3.5875	-0.9950
C	-10.6281	-2.2866	-2.4542	С	-10.4858	-2.0879	-2.6187
Н	-11.5049	-0.7365	1.3225	Н	-11.3980	-0.9171	1.2497
Н	-11 0942	2 9136	-0.9017	Н	-11 3238	2 9311	-0.6625
C	-11.1179	1.0674	0.2111	C	-11.1744	1.0014	0.2909
Ċ	-9 2553	-2 5882	-0.0504	Ċ	-9.0835	-2 4953	-0 2455
C	-10 1406	-1 1656	-1 7847	C	-10.0671	-0 9960	-1 8624
н	-8 7100	-2 7099	0.8807	Н	-8 5296	-2.6549	0.6743
C	-9 4549	-1 2952	-0.5653	C	-9 3655	-1 1794	-0.6572
н	-10 2885	-0.1771	-2 2064	Н	-10 2752	0.0116	-2.2063
C	-9 6344	1 0221	0.3897	C	-9 6950	1.0583	0.4373
C	-8 8969	-0.1026	0.1438	C	-8 8796	-0.0171	0.1373
C	-9 0222	2 3041	0.1150	C	-9 1521	2 3605	0.9088
н	-10 4733	2.5041	2 4174	н	-10 6466	2.5005	2 4435
н	-10.4755	2.0200	-0.6257	н	-7 5521	2.0230	-0 5367
C II	-9.5942	3 0202	1 0200	C II	-9.7782	2.7755	1 0507
C	-9.3942	2 8552	0.2106	C C	-9.7782	2 9555	0.2875
C	-7.9012	_0.2373	0.2100	C C	-7.4709	-0.0063	0.2873
с u	-7.4098	-0.2373	0.5595	с u	-7.4709	-0.0905	0.3821 2 5847
и П	-7.7724	1.0078	1 3 4 2 6	и П	-7.8223	0.0371	1 2836
С	-0.80/1	-1.0078	-1.3420	П	-0.7388	-0.9032	-1.2030
C	-9.0447	4.2209	2.5500	C C	-9.2074	4.2095	2.3929
C	-7.5384	4.0070	0.0525	C	-7.5505	4.1908	0.7120
C	-7.0304	0.0710	1.8038	C	-7.0773	0.2700	1.00/3
	-0.3031	-0.7552	-0.5502		-0.40/3	-0.3923	-0.2797
п	-9.4933	4./300	5.164/ 0.1177	П	-9.7733	4.8031	5.2105 0.2147
п	-0.4933	4.4/34	0.11//	П	-0.0982	4.0521	0.2147
	-7.9239	4./300	1.7073		-0.1/49	4.8007	1.7710 2.1045
П	-7.4991	5.0998	2.0300	П	-7.7902	5.8224	2.1045
C	-5.7250	-0.0899	2.2459	C	-5./588	0.1000	2.2955
U U	-5.1/55	-0.8800	0.0358	U U	-5.1425	-0.6/09	0.1133
H	-5.4241	0.10/1	3.25/3	Н	-5.4889	0.4690	3.3002
H	-4.45/8	-1.2496	-0.6853	H	-4.4011	-1.0265	-0.58/9
U U	-4.7552	-0.5559	1.3381	U U	-4.7455	-0.2902	1.4103
H	-3.8269	-1./1/1	3.//39	H	-3.8305	-1.0890	3.9961
C	-3.3952	-0./985	1.83/3	C	-3.3981	-0.4464	1.9419
0	-2.862/	0.6514	-0.6634	0 C	-2.8342	0.7006	-0.6980
	-3.08/0	-1.3834	3.0627		-3.0924	-0.8/19	3.2427
N	-2.1810	-0.5621	1.1826	N	-2.1/42	-0.3441	1.2560
C	-1.9464	0.1639	-0.0217	C	-1.9234	0.2412	-0.0128
C	-1.6928	-1.5235	3.1695	C	-1.7151	-1.0583	3.3634
Н	-1.0064	1.2668	-2.2335	Н	-0.9920	1.0142	-2.3772
С	-1.1281	-1.0121	2.00/3	C	-1.1316	-0.7225	2.1318
H	-1.1378	-1.9574	3.9895	H	-1.1/11	-1.4078	4.2293
C	-0.5274	0.2664	-0.4140	C	-0.5161	0.2358	-0.4339
C	-0.2160	0.8817	-1.5994	C	-0.2028	0.6928	-1.7092
C	0.2160	-0.8817	1.5994	C	0.2028	-0.6928	1.7092
C	0.5274	-0.2664	0.4140	C	0.5161	-0.2358	0.4339
H	1.1378	1.9574	-3.9895	H	1.1711	1.4078	-4.2293
С	1.1281	1.0121	-2.0073	С	1.1316	0.7225	-2.1318
Н	1.0064	-1.2668	2.2335	Н	0.9920	-1.0142	2.3772

С	1.6928	1.5235	-3.1695	C	1.7151	1.0583	-3.3634
С	1.9464	-0.1639	0.0217	С	1.9234	-0.2412	0.0128
Ν	2,1810	0.5621	-1.1826	N	2.1742	0.3441	-1.2560
С	3.0870	1.3834	-3.0627	C	3.0924	0.8719	-3.2427
0	2.8627	-0.6514	0.6634	0	2.8342	-0.7006	0.6980
Č	3.3952	0.7985	-1.8373	Č	3.3981	0.4464	-1.9419
Н	3 8269	1 7171	-3 7759	Н	3 8365	1 0890	-3 9961
C	4 7552	0 5559	-1 3381	C	4 7455	0 2902	-1 4163
Н	4 4578	1 2496	0.6853	Н	4 4011	1 0265	0 5879
Н	5 4241	-0.1671	-3 2573	Н	5 4889	-0 4690	-3 3002
C	5 1755	0.8800	-0.0358	C	5 1425	0.6709	-0 1133
C	5 7236	0.0899	-2 2459	C	5 7588	-0.1666	-2 2935
н	7 4991	-5 6998	-2.0366	н	7 7962	-5 8224	-2 1045
C	7 9239	-4 7560	-1 7073	C	8 1749	-4 8607	-1 7710
н	6 4933	-4 4754	-0 1177	н	6 6982	-4 6321	-0.2147
н	9 4953	-4 7566	-3 1847	н	9 7753	-4 8031	-3 2163
C II	6 5051	0 7352	0 3362	C	6 4675	0 5925	0 2797
C C	7 0504	-0.0710	-1 8638	C	7 0775	-0 2706	-1 8875
C C	7.0504	-0.0710	-0.6325	C	7.5773	-0.2700	-0.7126
C C	0.0447	-4.0070	-0.0525		9 2874	-4.1908	-0.7120
ч	6 8071	1 0078	-2.3300	ч	6 7388	-4.2095	1 2836
и П	0.8071	0.4458	2 5813		7 8220	0.9032	2 5847
II C	7.7724	-0.4438	-2.3613		7.8229	-0.03/1	-2.3047
C C	7.4098	0.2575	-0.3393		2 0266	0.0905	-0.3621
C C	7.9012	-2.8552	1.0200		0.0300	-2.9555	-0.2673
U U	9.3942	-3.0202	-1.9209		9.7782	-3.0005	-1.9392
п	10.4722	-2.5200	0.0237	п	1.3321	-2.4455	0.3307
П	10.4733	-2.0200	-2.41/4	П	0.1521	-2.0230	-2.4455
C	9.0222	-2.3041	-0.8543		9.1521	-2.3605	-0.9088
C	8.8969	0.1026	-0.1438		8.8/96	0.01/1	-0.1414
C II	9.6344	-1.0221	-0.3897		9.6950	-1.0583	-0.43/3
H	10.2885	0.1//1	2.2064	Н	10.2752	-0.0116	2.2063
C	9.4549	1.2952	0.3653		9.3655	1.1/94	0.6572
H	8./100	2.7099	-0.880/	Н	8.5296	2.6549	-0.6/43
C	10.1406	1.1656	1./84/		10.06/1	0.9960	1.8624
C	9.2553	2.5882	0.0504	C	9.0835	2.4953	0.2455
C	11.1179	-1.0674	-0.2111	C	11.1744	-1.0014	-0.2909
Н	11.0942	-2.9136	0.9017	Н	11.3238	-2.9311	0.6625
Н	11.5049	0.7365	-1.3225	Н	11.3980	0.9171	-1.2497
C	10.6281	2.2866	2.4542	C	10.4858	2.0879	2.6187
C	9.7526	3.7085	0.7138	C	9.5152	3.5875	0.9950
C	11.7206	-2.1335	0.4797	C	11.8772	-2.0730	0.2943
Н	11.1513	2.1627	3.3981	H	11.0186	1.9235	3.5507
C	11.9512	-0.0847	-0.7715	C	11.9179	0.0918	-0.7756
С	10.4415	3.5625	1.9193	C	10.2173	3.3883	2.1854
Н	9.5978	4.6971	0.2908	Н	9.2992	4.5950	0.6516
H	10.8230	4.4356	2.4407	H	10.5466	4.2392	2.7744
C	13.1043	-2.1961	0.6339	C	13.2638	-2.0376	0.4192
C	13.3358	-0.1540	-0.6286	C	13.3053	0.1193	-0.6637
Н	13.5475	-3.0219	1.1832	Н	13.7830	-2.8680	0.8888
Н	13.9607	0.6143	-1.0750	Н	13.8586	0.9691	-1.0528
С	13.9185	-1.2065	0.0796	C	13.9847	-0.9417	-0.0603
Н	14.9974	-1.2589	0.1925	H	15.0667	-0.9173	0.0295

mode	sym	freq	IR act	Mode	sym	freq	IR act	mode	sym	freq	IR act
1	AU	2.0	0.02	113	AU	739.9	3.54	225	AU	1296.2	41.26
2	AU	7.0	0.01	114	AU	752.2	7.96	226	AG	1299.7	0.00
3	AG	10.0	0.00	115	AG	753.2	0.00	227	AU	1300.1	3.24
4	AU	11.3	0.03	116	AU	770.1	65.86	228	AU	1323.4	63.98
5	AG	17.4	0.00	117	AG	771.0	0.00	229	AG	1325.5	0.00
6	AG	25.7	0.00	118	AG	773.1	0.00	230	AU	1328.8	18.46
7	AU	25.8	0.02	119	AU	778.4	9.62	231	AG	1330.1	0.00
8	AG	28.4	0.00	120	AG	780.9	0.00	232	AG	1330.9	0.00
9	AU	31.7	0.02	121	AU	781.6	31.56	233	AU	1333.9	12.44
10	AG	41.5	0.00	122	AG	793.3	0.00	234	AG	1334.9	0.00
11	AU	46.1	0.12	123	AU	793.7	22.64	235	AU	1336.3	5.24
12	AG	493	0.00	124	AG	804 7	0.00	236	AG	1337.1	0.00
13	AU	49.9	0.68	125	AU	808.9	81 48	237	AU	1347.3	0.63
14	AG	55.6	0.00	126	AG	824.6	0.00	238	AG	1347.3	0.00
15	AU	56.9	1.04	120	AU	837.6	2.89	239	AU	1349.6	87.47
16	AU	60.5	0.49	128	AG	841.8	0.00	240	AG	1360.6	0.00
17	AG	61.9	0.42	120		846.8	17.14	240		1360.6	3.06
18	AG	63.0	0.00	12)		8/0 1	8 1 2	241		1361 /	9.00 8.44
10		66.2	0.00	130	AG	849.1 840.2	0.12	242	AG	1361.4	0.44
20	AC	66.8	0.03	121	AG	049.2 960 1	0.00	243	AG	1261.9	0.00
20		67.2	0.00	132		800.1 860.1	0.00	244		1261.0	0.00
21		07.5 60.5	0.29	133		800.1 861 7	0.40	243	AU AC	1260.1	1.33
22	AU AC	09.5	0.24	134	AU AC	801./ 961.7	1.90	240	AU	1202.7	0.00
23	AG	/0.9	0.00	133	AU	801./	0.00	247	AU	1392.7	31.01
24	AG	95.1	0.00	130	AU	862.4	2.65	248	AU AC	1411.1	19/.11
25	AU	102.1	0.59	13/	AG	862.4	0.00	249	AG	1423.1	0.00
26	AU	106.5	0.82	138	AG	868.4	0.00	250	AU	1451.2	68.48
27	AG	121.5	0.00	139	AU	868.5	22.64	251	AG	1452.4	0.00
28	AU	122.8	1.04	140	AG	8/9.5	0.00	252	AG	1454.4	0.00
29	AG	136.5	0.00	141	AU	880.0	12.56	253	AU	1482.6	2.56
30	AU	145.1	0.64	142	AU	888.9	4.77	254	AG	1482.6	0.00
31	AG	153.3	0.00	143	AG	889.0	0.00	255	AU	1483.1	11.21
32	AU	157.5	0.12	144	AG	928.7	0.00	256	AG	1483.1	0.00
33	AG	169.9	0.00	145	AU	930.3	4.25	257	AG	1485.0	0.00
34	AU	177.4	0.83	146	AG	930.4	0.00	258	AU	1485.0	18.78
35	AG	190.7	0.00	147	AU	934.3	16.53	259	AG	1508.7	0.00
36	AU	197.8	0.58	148	AU	936.4	2.18	260	AU	1509.2	628.28
37	AG	211.7	0.00	149	AG	936.4	0.00	261	AU	1531.2	18.17
38	AU	231.5	0.96	150	AU	937.8	8.92	262	AG	1531.2	0.00
39	AG	239.5	0.00	151	AG	937.9	0.00	263	AU	1534.4	14.56
40	AU	250.8	0.74	152	AG	938.9	0.00	264	AG	1534.4	0.00
41	AG	251.0	0.00	153	AU	954.9	17.43	265	AU	1535.3	45.36
42	AU	258.4	0.86	154	AG	973.5	0.00	266	AG	1535.3	0.00
43	AG	258.6	0.00	155	AU	973.7	0.45	267	AU	1549.1	165.18
44	AU	259.8	3.51	156	AG	974.4	0.00	268	AG	1556.0	0.00
45	AG	263.6	0.00	157	AU	974.4	2.35	269	AU	1564.0	292.75
46	AU	276.3	6.14	158	AU	975.6	1.24	270	AG	1590.5	0.00
47	AU	288.1	1.87	159	AG	975.6	0.00	271	AU	1594.1	63.08
48	AG	289.6	0.00	160	AG	976.1	0.00	272	AG	1597.8	0.00
49	AG	305.2	0.00	161	AU	976.1	0.56	273	AG	1609.4	0.00
50	AG	307.7	0.00	162	AG	976.9	0.00	274	AU	1610.2	0.85
51	AU	309.6	10.79	163	AU	976.9	1.69	275	AG	1622.6	0.00
		222.0	14.00	164	ΔΙΙ	992.9	9.01	276	AU	1627.8	1 30

Table S7. Frequencies of vibrations of 1 in S_0 state.

53	AG	327.5	0.00	165	AG	993.0	0.00	277	AG	1627.8	0.00
54	AU	367.8	1.84	166	AU	997.6	1.42	278	AU	1628.9	7.50
55	AG	376.8	0.00	167	AG	997.6	0.00	279	AG	1628.9	0.00
56	AU	381.0	8.71	168	AG	997.9	0.00	280	AG	1634.7	0.00
57	AG	400.0	0.00	169	AU	997.9	1.23	281	AU	1634.7	0.88
58	AG	411.5	0.00	170	AU	1000.2	10.52	282	AU	1640.3	#####
59	AU	415.8	0.97	171	AG	1000.2	0.00	283	AU	1652.7	2.07
60	AG	416.1	0.00	172	AG	1015.5	0.00	284	AG	1652.7	0.00
61	AU	416.8	1 72	173	AU	1015.5	6.08	285	AG	1653 5	0.00
62	AG	417.1	0.00	174	AG	1015.9	0.00	286	AU	1653.6	9 34
63	AU	419.6	0.90	175	AU	1015.9	4 84	287	AU	1656.0	5 99
64	AG	419.8	0.00	176	AG	1016.1	0.00	288	AG	1656.0	0.00
65	AU	421.6	4 95	177	AU	1016.1	0.15	289	AG	1658.3	0.00
66	AG	423.2	0.00	178	AG	1010.1	0.00	209	AU	1658.3	12 41
67	AU	423.2	0.00	170	AU	1017.1	9.01	291	AG	1770 2	0.00
68	AU	451.9	1.89	180	AG	1040 5	0.00	291		1774.8	806.83
69	AG	452.8	0.00	181		1040.5	4 95	292		3177.2	3 45
70		470.8	5.00	182	AG	1054.8	0.00	293	AG	3177.2	0.00
70	AG	470.0	0.00	182		1057.2	12.67	204		3177.2	6.22
72		472.2	2.80	183	AG	1057.2	0.00	295	AG	3177.2	0.22
72	AG	490.0	2.89	104		1057.2	0.00	290		2177.5	0.00 3.78
75		490.7 510.6	11.20	105	AC	1060.5	0.00	297	AC	21777	5.78
74	AC	520.6	0.00	100	AG	1000.4	0.00	290		2195 7	15.46
75		540.0	14.92	10/		1070.5	0.00	299	AC	2105.7	13.40
/0 77	AU	554.0	14.65	100	AU	10/5./	115.98	201	AG	2105.0	0.00
70	AU AC	554.5	9.07	189	AU AC	1090.5	181.8/	202	AU	2105.0	0.00
/8	AG	560.6	0.00	190	AG	1108.2	0.00	302	AU	3185.8	/.00
/9	AU	567.8	11.89	191	AU	1108.2	3.22	303	AU	3187.2	11.00
80	AG	577.5	0.00	192	AG	1109./	0.00	304	AG	3187.2	0.00
81	AG	586.5	0.00	193	AU	1109.8	4.06	305	AU	3192.3	25.76
82	AU	587.2	26.61	194	AG	1110.3	0.00	306	AG	3192.3	0.00
83	AG	588.6	0.00	195	AU	1110.4	14.85	307	AU	3196.2	/0.88
84	AU	598.9	37.72	196	AG	1124.1	0.00	308	AG	3196.2	0.00
85	AG	604.1	0.00	197	AU	1144.0	18.95	309	AU	3196.4	42.98
86	AU	630.7	2.17	198	AG	1146.9	0.00	310	AG	3196.4	0.00
87	AG	630.7	0.00	199	AU	1150.5	46.63	311	AG	3197.2	0.00
88	AU	632.4	1.90	200	AG	1156.7	0.00	312	AU	3197.2	37.98
89	AG	632.4	0.00	201	AU	1157.7	3.15	313	AU	3197.9	17.81
90	AU	635.7	3.96	202	AG	1179.2	0.00	314	AG	3197.9	0.00
91	AG	635.7	0.00	203	AU	1186.5	0.07	315	AG	3203.8	0.00
92	AG	642.9	0.00	204	AG	1186.5	0.00	316	AU	3203.8	109.05
93	AU	643.3	22.99	205	AU	1186.9	0.63	317	AU	3204.0	20.70
94	AU	649.8	14.75	206	AG	1186.9	0.00	318	AG	3204.0	0.00
95	AG	649.9	0.00	207	AU	1187.2	0.12	319	AU	3204.4	59.64
96	AG	657.9	0.00	208	AG	1187.2	0.00	320	AG	3204.4	0.00
97	AU	662.9	8.67	209	AU	1208.6	0.86	321	AU	3210.7	34.51
98	AU	671.9	4.91	210	AG	1208.6	0.00	322	AG	3210.7	0.00
99	AG	673.2	0.00	211	AU	1209.2	6.69	323	AU	3211.5	17.38
100	AG	679.1	0.00	212	AG	1209.2	0.00	324	AG	3211.5	0.00
101	AU	686.4	21.57	213	AU	1210.2	4.12	325	AU	3212.2	7.62
102	AG	691.4	0.00	214	AG	1210.2	0.00	326	AG	3212.2	0.00
103	AU	702.3	9.11	215	AU	1218.1	24.78	327	AU	3212.6	29.70
104	AG	703.3	0.00	216	AG	1218.5	0.00	328	AG	3212.6	0.00
105	AU	712.4	32.14	217	AU	1229.3	3.16	329	AG	3229.6	0.00
106	AG	712.7	0.00	218	AG	1233.6	0.00	330	AU	3229.8	4.37
107	AU	715.3	67.60	219	AU	1234.2	4.71	331	AG	3234.7	0.00

108 AG	715.5	0.00	220 AG	1234.7 0.0	00 332 AU	3234.7	12.10
109 AU	718.8	88.97	221 AU	1269.8 778.0	06 333 AU	3256.4	25.88
110 AG	719.0	0.00	222 AG	1280.6 0.0	00 334 AG	3256.4	0.00
111 AU	721.4	7.21	223 AU	1280.7 5.3	31 335 AU	3271.5	7.93
112 AG	727.7	0.00	224 AG	1281.9 0.0	00 336 AG	3271.5	0.00

Table S8 (S5). Cartesian coordinates of S_0 and S_1 optimized structures of 2.

	S_0			S ₁					
atom	х	у	Z	atom	х	у	Z		
Н	6.9153	-4.0593	1.6406	Н	7.0835	-4.0010	1.4441		
Н	5.7808	-1.8623	1.6483	Н	5.9317	-1.8250	1.5231		
Н	5.6409	0.1660	0.0712	Н	5.6418	0.1516	0.2186		
C	6.0836	-3.8803	0.9656	С	6.1850	-3.8468	0.8538		
C	5.4482	-2.6398	0.9675	С	5.5404	-2.6164	0.8920		
Н	6.1382	-5.8562	0.1036	Н	6.1746	-5.8461	0.0379		
C	4.5606	0.1451	0.0652	С	4.5618	0.1385	0.1850		
C	5.6463	-4.8880	0.1062	С	5.6728	-4.8835	0.0687		
Н	3.9713	2.2952	-0.0849	Н	4.0068	2.2839	0.0197		
C	4.3590	-2.3862	0.1152	С	4.3557	-2.3879	0.1529		
C	3.6969	1.2510	-0.0306	С	3.7242	1.2418	0.0642		
C	3.8053	-1.0228	0.0858	С	3.7960	-1.0425	0.1634		
C	4.5693	-4.6450	-0.7501	С	4.5078	-4.6721	-0.6745		
C	3.9300	-3.4093	-0.7483	С	3.8530	-3.4470	-0.6356		
N	2.4615	-0.6411	0.0129	Ν	2.4545	-0.6490	0.0542		
C	2.3955	0.7664	-0.0599	С	2.4009	0.7657	-0.0085		
Н	4.2256	-5.4229	-1.4254	Н	4.1062	-5.4697	-1.2926		
Н	3.0962	-3.2337	-1.4162	Н	2.9529	-3.3019	-1.2162		
0	1.3760	-2.6582	0.3220	0	1.3376	-2.6559	0.3529		
C	1.2977	-1.4527	0.1523	С	1.2830	-1.4422	0.1834		
C	1.1509	1.4289	-0.1254	С	1.1802	1.4338	-0.0959		
Н	1.1246	2.5090	-0.2140	Н	1.1512	2.5139	-0.1671		
C	-0.0199	0.7181	-0.0704	С	-0.0135	0.7067	-0.0740		
C	0.0199	-0.7181	0.0704	С	0.0135	-0.7067	0.0740		
Н	-1.1246	-2.5090	0.2140	Н	-1.1512	-2.5139	0.1671		
C	-1.1509	-1.4289	0.1254	С	-1.1802	-1.4338	0.0959		
C	-1.2977	1.4527	-0.1523	С	-1.2830	1.4422	-0.1834		
0	-1.3760	2.6582	-0.3220	0	-1.3376	2.6559	-0.3529		
Н	-3.0962	3.2337	1.4162	Н	-2.9529	3.3019	1.2162		
Н	-4.2256	5.4229	1.4254	Н	-4.1062	5.4697	1.2926		
N	-2.4615	0.6411	-0.0129	Ν	-2.4545	0.6490	-0.0542		
C	-2.3955	-0.7664	0.0599	С	-2.4009	-0.7657	0.0085		
C	-3.9300	3.4093	0.7483	С	-3.8530	3.4470	0.6356		
C	-4.5693	4.6450	0.7501	С	-4.5078	4.6721	0.6745		
C	-3.8053	1.0228	-0.0858	С	-3.7960	1.0425	-0.1634		
C	-3.6969	-1.2510	0.0306	С	-3.7242	-1.2418	-0.0642		

C	-4.3590	2.3862	-0.1152	C	-4.3557	2.3879	-0.1529
Н	-3.9713	-2.2952	0.0849	Н	-4.0068	-2.2839	-0.0197
C	-5.6463	4.8880	-0.1062	C	-5.6728	4.8835	-0.0687
C	-4.5606	-0.1451	-0.0652	C	-4.5618	-0.1385	-0.1850
Н	-6.1382	5.8562	-0.1036	Н	-6.1746	5.8461	-0.0379
C	-5.4482	2.6398	-0.9675	C	-5.5404	2.6164	-0.8920
C	-6.0836	3.8803	-0.9656	C	-6.1850	3.8468	-0.8538
Н	-5.6409	-0.1660	-0.0712	Н	-5.6418	-0.1516	-0.2186
H	-5.7808	1.8623	-1.6483	H	-5.9317	1.8250	-1.5231
Н	-6.9153	4.0593	-1.6406	H	-7.0835	4.0010	-1.4441

Figure S5. The length of the bonds in the ground state S_0 (left) and electronic excited state S_1 (right) of the molecule **2**.

	S	50		S1					
		freq		freq					
mode	sym	[cm ⁻¹]	IR act	Mode	Sym	[cm ⁻¹]	IR act		
1	AU	18.1	0.22	1	AU	16.5	0.67		
2	AU	38.6	0.97	2	AU	40.2	1.53		
3	AG	42.7	0.00	3	AG	41.7	0.00		
4	AU	47.5	0.63	4	AU	48.8	2.81		
5	AG	52.3	0.00	5	AG	57.7	0.00		
6	AG	84.6	0.00	6	AG	90.7	0.00		
7	AU	86.0	1.50	7	AU	96.3	6.00		
8	AU	112.8	2.85	8	AU	108.5	3.56		
9	AG	146.5	0.00	9	AU	146.9	62.25		
10	AU	156.5	0.73	10	AG	154.5	0.00		
11	AU	175.2	0.20	11	AU	177.9	33.31		

Table S9. Frequencies of vibrations of $\mathbf{2}$ in S_0 and S_1 electronic states

12	AG	177.8	0.00	12	AG	184.5	0.00
13	AG	196.0	0.00	13	AG	201.5	0.00
14	AU	260.9	1.36	14	AU	239.2	216.46
15	AG	269.8	0.00	15	AG	258.2	0.00
16	AG	286.7	0.00	16	AU	280.1	0.00
17	AU	288.0	1 92	17	AU	296.5	22.98
18	AU	321.4	1.12	18	AU	309.4	15.01
19	AU	337 3	30.22	19	AG	337 3	16.18
20	AG	347 3	0.00	20	AU	339.5	0.00
21	AG	369.2	0.00	21	AG	363.9	0.00
21	AG	404 5	0.00	21	AG	401.8	0.00
23	AU	408.6	2 79	23	AU	402.3	14 81
23	AU	418.5	1 79	23	AG	414 7	74.26
25	AG	420.2	0.00	25	AG	422.4	0.00
25	AG	420.2	0.00	25		447.8	26.00
20	AU	456.6	1 33	20	AU	452.4	0.00
27		529.3	4 78	27		512.1	264.65
20	AG	542.2	0.00	20	AG	529.6	0.00
30		542.6	17.67	30	AG	529.8	100.01
31		565.5	10.84	31	AG	537.3	0.00
32	AG	579.4	0.00	31		556.8	33.06
32	AG	588.2	0.00	32		582.8	0.00
31		630.6	1.84	3/	AG	627 3	2 71
34	AG	630.8	0.00	34		627.3	2.71
35	AG	653.2	0.00	35	AG	654.4	0.00
30		661.0	11.80	30		664.0	4.15
20	AC	672.5	0.00	20	AC	665 0	4.15
30 20		670.0	0.00	20		666.0	/1.50
39 40	AC	601.2	0.00	39 40	AC	671.0	0.00
40		601.2	0.00	40		682.0	50.00
41	AC	702.8	4.19	41	AC	605.6	0.00
42		702.8	56.60	42		693.0	0.00
45	AU AC	707.0	30.09	45	AU	097.0 706.0	92.81
44	AG	711.1	0.00	44	AG	700.9	12.10
43	AU	769.7	4.75	43		715.0	1072.42
40	AU AC	708.8	41.82	40	AU	740.2	10/5.42
4/	AG	773.1	0.00	47	AU	747.5	0.00
48	AG	774.2	26.20	48	AG	707.0	0.00
49 50	AU	/ 64.0	30.20	49	AU	772.5	307.37
50	AG	808.1 811.8	0.00	50	AU	782.9	0.00
52	AU AC	811.8 824.7	37.20	51		702.1	90.00
52 52	AG	824.7 842.2	0.00	52 52	AU	/92.1	2/9.8/
55	AU AC	843.3 852.0	9.20	55		819.0	0.00
54	AG	852.9	0.00	54	AU	043.2 942.2	5.57
55 57	AU	855.0	2.01	55 56	AU AC	843.2	0.00
50 57	AU AC	887.0	3.72	50 57	AG	857.4	0.00
57	AG	887.7	0.00	57	AG	804.0	4/.18
58 50	AG	928.3	0.00	58 50	AU AC	893.3	0.00
39 40	AU	930.9	2.97	39 40		893.0	10.21
0U 61		931.3 025.2	0.00	0U		914.0	0.00
01	AU	935.3	14.98	01	AU	918.4	413.23
02	AU	940.1	0.00	02		926.4	0.00
05	AU	955.6	3.97	03	AU	932.4	309.27 161.01
04 65	AU	9/1./	2.75	04 65	AG	9/0.6	101.01
05	AG	9/1./	0.00	65	AG	9/1./	0.00
00	AG	996.1	0.00	00	AU	9/5.8	807.33

67	AU	996.2	0.55	67	AG	993.4	0.00
68	AG	1016.1	0.00	68	AU	993.5	1 17
69	AU	1016.2	6.67	69	AG	1008.7	0.00
70	AG	1018.0	0.00	70	AU	1011.9	10.17
70	AU	1055.1	3 38	70	AG	1013.1	0.00
72	AG	1057.3	0.00	72	AU	1052.9	635
73	AG	1069.7	0.00	73	AU	1054.9	0.00
73 74	AU	1072.0	76 59	74	AG	1083.0	0.00
75	AU	1098.5	137 74	75	AU	1084.0	39.24
76	AG	11111	0.00	76	AG	1108.4	228.95
70	AU	1111.1	10.76	70	AU	1112.5	0.00
78	AG	1125.9	0.00	78	AG	1112.3	22 70
70 79	AU	1123.9	44 71	79	AU	1122.0	0.00
80	AG	1178.8	0.00	80	AG	1122.0	0.00
81		1188 5	0.00	81		1107.5	67.20
82	AG	1188.5	0.40	82	AG	1188.3	0.00
83		1213.0	26.36	83	AG	1180.5	77.82
84	AG	1213.0	20.50	84		1215.1	79.66
85		1213.3	2 75	85		1215.1	0.00
85	AG	1228.9	2.75	86	AG	1210.1	2 08
80 97		1234.0	622.22	80 87		1219.0	2.90
0/	AC	12/1.9	023.33	0/	AC	1221.0	505.27
00 20		1202.9	25.00	00 80	AG	1244.7	20.00
00	AC	1293.9	23.99	09		1204.4	30.09
90	AU	1327.4	0.00	90	AU	1200.1	0.00
91	AU AC	1327.7	//.50	91	AG	1330.8	0.00
92	AU	1333.0	0.00	92	AU	1335.8	27.54
93	AU AC	1348.5	104.78	93	AU AC	1345.4	0.00
94	AG	1364.1	0.00	94	AG	1347.1	0.00
95	AU AC	1364.6	5.92	95	AU	1363.5	3.68
96	AG	1369.5	0.00	96	AG	1370.6	0.00
9/	AU	1392.7	19.57	9/	AU	13/1.0	5.02
98	AU AC	1412.3	1/3.13	98	AU AC	1390.8	5.57
99	AG	1425.7	0.00	99	AG	1425.9	0.00
100	AG	1454.1	0.00	100	AG	1466.9	0.00
101	AU AC	1486.6	/2.08	101	AU	1469.2	13.97
102	AG	1487.3	0.00	102	AG	1485.8	0.00
103	AG	1510.9	0.00	103	AG	1488.9	121.20
104	AU	1510.9	250.98	104	AU	1498.5	39.17
105	AU	1545.9	38.20	105	AG	1502.6	0.00
106	AG	1550.2	0.00	106	AU	1537.1	0.00
107	AU	1565.5	283.86	107	AU	1538.0	17.62
108	AG	1598.1	0.00	108	AG	1545.3	0.00
109	AG	1620.0	0.00	109	AG	15/4.9	98.35
110	AU	1630.8	64.80	110	AU	1587.2	0.00
111	AG	1633.0	0.00	111	AG	1610.5	40.13
112	AU	1642.5	1091.87	112	AU	1611.5	0.00
113	AU	1657.2	4.47	113	AU	1644.0	/6.5/
114	AG	1657.3	0.00	114	AG	1648.2	0.00
115	AG	1772.8	0.00	115	AG	1710.4	469.98
116	AU	1777.1	616.10	116	AU	1725.1	0.00
117	AU	3181.0	5.33	117	AG	3181.7	19.93
118	AG	3181.0	0.00	118	AU	3181.7	0.00
119	AU	3190.0	11.11	119	AG	3190.9	0.00
120	AG	3190.0	0.00	120	AU	3190.9	12.07
121	AU	3199.5	53.95	121	AG	3201.5	0.00

122	AG	3199.5	0.00	122	AU	3201.9	48.46
123	AU	3208.4	81.29	123	AG	3209.8	143.76
124	AG	3208.5	0.00	124	AU	3209.9	0.00
125	AG	3229.2	0.00	125	AG	3240.0	0.00
126	AU	3229.4	3.15	126	AU	3240.1	16.09
127	AG	3233.6	0.00	127	AG	3253.9	13.44
128	AU	3233.6	8.48	128	AG	3253.9	0.00
129	AU	3256.3	15.33	129	AU	3256.3	0.53
130	AG	3256.3	0.00	130	AG	3256.5	0.00
131	AU	3271.2	6.88	131	AU	3271.8	0.00
132	AG	3271.3	0.00	132	AU	3272.2	15.48

Table S10. Energies and oscillator strengths of four lowest energy electronic transitions ($S_0 \rightarrow S_i$, i = 1-4) for different dimers of DPND **1**, calculated by TD B3LYP/6-31G(d,p) method. The dimers are obtained by removing the monomer pairs from the DPND **1** crystal. The energies and oscillator strengths for two lowest excited state of DPND **1** monomer in crystal geometry are following: $S_1(AU)$ 492.8 nm, f = 0.6126 and $S_2(AG)$ 428.14 nm, f = 0.0000.

State of the second sec	S ₁ (AU) 516.34 nm; f=0.1395 S ₂ (AG) 515.19 nm f=0.0000 S ₃ (AU) 501.45 nm f=1.3115 S ₄ (AG) 485.94 nm f=0.0000
	S ₁ (AG) 576.11 nm f=0.0000 S ₂ (AU) 573.68 nm f=0.0156 S ₃ (AG) 509.96 nm f=0.0000 S ₄ (AU) 489.10 nm f=1.0334
A CONTRACTOR OF THE STATE	S ₁ (AU) 523.32 nm f=0.0014 S ₂ (AG) 523.31 nm f=0.0000 S ₃ (AU) 499.93 nm f=1.2839 S ₄ (AG) 490.62 nm f=0.0000

Table S11. Energies and oscillator strengths of four lowest energy electronic transitions ($S_0 \rightarrow S_i$, I = 1-4) for different dimers of DPND **2**, calculated by TD B3LYP/6-31G(d,p) method. The dimers are obtained by removing the monomer pairs from the DPND **2** crystal. The energies and oscillator strengths for two lowest excited state of DPND **2** monomer in crystal geometry are following: $S_1(AU)$ 552.5 nm; f = 0.4570 (HOMO \rightarrow LUMO) and $S_2(AG)$ 524.66 nm; f = 0.0000 (HOMO-1 \rightarrow LUMO). Atom coordinates for dimer B are given in Table S12.

	В
and the second	$S_{1}(AG) 554.43 \text{ nm}$ f=0.0000 $S_{2}(AU) 550.70 \text{ nm}$ f=0.8421 $S_{3}(AG) 532.69 \text{ nm}$ f=0.0000 $S_{4}(AU) 532.69 \text{ nm}$ f=0.0000
	C

	Х	У	Z		Х	У	Z		х	У	Z		Х	У	Z
С	4.4051	-6.5160	-0.5998	С	0.9527	-5.1352	0.5998	С	-0.9527	5.1352	-0.5998	С	-4.4051	6.5160	0.5998
С	5.2059	-8.8331	-0.0464	С	0.1519	-2.8181	0.0464	С	-0.1519	2.8181	-0.0464	С	-5.2059	8.8331	0.0464
С	4.6253	-9.8905	0.6114	С	0.7326	-1.7606	-0.6114	С	-0.7326	1.7606	0.6114	С	-4.6253	9.8905	-0.6114
Н	5.0086	-10.7539	0.7120	Н	0.3493	-0.8972	-0.7120	Н	-0.3493	0.8972	0.7120	Н	-5.0086	10.7539	-0.7120
С	3.3751	-9.4924	1.1132	С	1.9828	-2.1588	-1.1132	С	-1.9828	2.1588	1.1132	С	-3.3751	9.4924	-1.1132
Н	2.7722	-10.0348	1.6085	Н	2.5856	-1.6163	-1.6085	Н	-2.5856	1.6163	1.6085	Н	-2.7722	10.0348	-1.6085
С	3.1804	-8.1775	0.7585	С	2.1775	-3.4736	-0.7585	С	-2.1775	3.4736	0.7585	С	-3.1804	8.1775	-0.7585
С	3.2840	-4.3544	-0.9803	С	2.0739	-7.2968	0.9803	С	-2.0739	7.2968	-0.9803	С	-3.2840	4.3544	0.9803
С	3.2523	-5.6137	-0.4089	С	2.1055	-6.0375	0.4089	С	-2.1055	6.0375	-0.4089	С	-3.2523	5.6137	0.4089
С	6.5203	-8.8509	-0.7017	С	-1.1624	-2.8003	0.7017	С	1.1624	2.8003	-0.7017	С	-6.5203	8.8509	0.7017
С	7.5541	-7.9783	-0.3573	С	-2.1963	-3.6729	0.3573	С	2.1963	3.6729	-0.3573	С	-7.5541	7.9783	0.3573
Н	7.4105	-7.3133	0.3070	Н	-2.0527	-4.3379	-0.3070	Н	2.0527	4.3379	0.3070	Н	-7.4105	7.3133	-0.3070
С	8.7793	-8.0742	-0.9726	С	-3.4214	-3.5770	0.9726	С	3.4214	3.5770	-0.9726	С	-8.7793	8.0742	0.9726
Н	9.4743	-7.4752	-0.7275	Н	-4.1165	-4.1760	0.7275	Н	4.1165	4.1760	-0.7275	Н	-9.4743	7.4752	0.7275
С	9.0173	-9.0405	-1.9542	С	-3.6595	-2.6107	1.9542	С	3.6595	2.6107	-1.9542	С	-9.0173	9.0405	1.9542
С	8.0071	-9.9409	-2.2548	С	-2.6493	-1.7103	2.2548	С	2.6493	1.7103	-2.2548	С	-8.0071	9.9409	2.2548
Н	8.1648	-10.6342	-2.8856	Н	-2.8070	-1.0169	2.8856	Н	2.8070	1.0169	-2.8856	Н	-8.1648	10.6342	2.8856
С	6.7628	-9.8357	-1.6395	С	-1.4049	-1.8155	1.6395	С	1.4049	1.8155	-1.6395	С	-6.7628	9.8357	1.6395
Н	6.0735	-10.4487	-1.8665	Н	-0.7156	-1.2024	1.8665	Н	0.7156	1.2024	-1.8665	Н	-6.0735	10.4487	1.8665
С	10.3075	-9.0640	-2.7089	С	-4.9497	-2.5872	2.7089	С	4.9497	2.5872	-2.7089	С	-10.3075	9.0640	2.7089
С	10.7127	-7.9627	-3.3951	С	-5.3548	-3.6884	3.3951	С	5.3548	3.6884	-3.3951	С	-10.7127	7.9627	3.3951
С	11.1071	-10.3121	-2.6328	С	-5.7493	-1.3390	2.6328	С	5.7493	1.3390	-2.6328	С	-11.1071	10.3121	2.6328
С	11.7350	-10.8733	-3.7421	С	-6.3771	-0.7778	3.7421	С	6.3771	0.7778	-3.7421	С	-11.7350	10.8733	3.7421
Н	11.6042	-10.4891	-4.5999	Н	-6.2463	-1.1620	4.5999	Н	6.2463	1.1620	-4.5999	Н	-11.6042	10.4891	4.5999
С	12.5453	-11.9852	-3.6067	С	-7.1874	0.3341	3.6067	С	7.1874	-0.3341	-3.6067	С	-12.5453	11.9852	3.6067
Н	12.9742	-12.3530	-4.3703	Н	-7.6163	0.7018	4.3703	Н	7.6163	-0.7018	-4.3703	Н	-12.9742	12.3530	4.3703
С	12.7344	-12.5643	-2.3696	С	-7.3766	0.9132	2.3696	С	7.3766	-0.9132	-2.3696	С	-12.7344	12.5643	2.3696
Н	13.3127	-13.3117	-2.2767	Н	-7.9549	1.6605	2.2767	Н	7.9549	-1.6605	-2.2767	Н	-13.3127	13.3117	2.2767
С	12.0841	-12.0539	-1.2719	С	-6.7262	0.4027	1.2719	С	6.7262	-0.4027	-1.2719	С	-12.0841	12.0539	1.2719

Table S12. Atom coordinates of dimer B of DPND 2 (see also Table S11).

Н	12.1915	-12.4666	-0.4231	Η	-6.8337	0.8154	0.4231	Η	6.8337	-0.8154	-0.4231	Η	-12.1915	12.4666	0.4231
С	11.2699	-10.9382	-1.4022	С	-5.9121	-0.7129	1.4022	С	5.9121	0.7129	-1.4022	С	-11.2699	10.9382	1.4022
Н	10.8169	-10.5985	-0.6398	Н	-5.4590	-1.0527	0.6398	Η	5.4590	1.0527	-0.6398	Н	-10.8169	10.5985	0.6398
С	12.0531	-7.8633	-4.0375	С	-6.6952	-3.7879	4.0375	С	6.6952	3.7879	-4.0375	С	-12.0531	7.8633	4.0375
С	12.1529	-7.4997	-5.3751	С	-6.7950	-4.1515	5.3751	С	6.7950	4.1515	-5.3751	С	-12.1529	7.4997	5.3751
Н	11.3618	-7.3456	-5.8782	Н	-6.0039	-4.3055	5.8782	Η	6.0039	4.3055	-5.8782	Н	-11.3618	7.3456	5.8782
С	13.3855	-7.3588	-5.9853	С	-8.0276	-4.2924	5.9853	С	8.0276	4.2924	-5.9853	С	-13.3855	7.3588	5.9853
Н	13.4330	-7.1297	-6.9063	Н	-8.0752	-4.5215	6.9063	Η	8.0752	4.5215	-6.9063	Н	-13.4330	7.1297	6.9063
С	14.5458	-7.5493	-5.2655	С	-9.1880	-4.1018	5.2655	С	9.1880	4.1018	-5.2655	С	-14.5458	7.5493	5.2655
Н	15.3919	-7.4358	-5.6822	Н	-10.0341	-4.2154	5.6822	Н	10.0341	4.2154	-5.6822	Н	-15.3919	7.4358	5.6822
С	14.4670	-7.9072	-3.9291	С	-9.1091	-3.7440	3.9291	С	9.1091	3.7440	-3.9291	С	-14.4670	7.9072	3.9291
Н	15.2632	-8.0451	-3.4286	Н	-9.9053	-3.6061	3.4286	Н	9.9053	3.6061	-3.4286	Н	-15.2632	8.0451	3.4286
С	13.2331	-8.0657	-3.3216	С	-7.8752	-3.5854	3.3216	С	7.8752	3.5854	-3.3216	С	-13.2331	8.0657	3.3216
Н	13.1894	-8.3161	-2.4057	Н	-7.8316	-3.3351	2.4057	Н	7.8316	3.3351	-2.4057	Н	-13.1894	8.3161	2.4057
С	9.8706	-6.7419	-3.5009	С	-4.5127	-4.9092	3.5009	С	4.5127	4.9092	-3.5009	С	-9.8706	6.7419	3.5009
С	10.4238	-5.5069	-3.1758	С	-5.0659	-6.1443	3.1758	С	5.0659	6.1443	-3.1758	С	-10.4238	5.5069	3.1758
Η	11.3375	-5.4573	-2.9204	Н	-5.9796	-6.1939	2.9204	Н	5.9796	6.1939	-2.9204	Н	-11.3375	5.4573	2.9204
С	9.6700	-4.3535	-3.2171	С	-4.3122	-7.2977	3.2171	С	4.3122	7.2977	-3.2171	С	-9.6700	4.3535	3.2171
Η	10.0612	-3.5208	-2.9797	Н	-4.7033	-8.1304	2.9797	Н	4.7033	8.1304	-2.9797	Н	-10.0612	3.5208	2.9797
С	8.3372	-4.4096	-3.6067	С	-2.9793	-7.2415	3.6067	С	2.9793	7.2415	-3.6067	С	-8.3372	4.4096	3.6067
Н	7.8144	-3.6166	-3.6337	Н	-2.4565	-8.0346	3.6337	Н	2.4565	8.0346	-3.6337	Н	-7.8144	3.6166	3.6337
С	7.7795	-5.6167	-3.9511	С	-2.4217	-6.0345	3.9511	С	2.4217	6.0345	-3.9511	С	-7.7795	5.6167	3.9511
Н	6.8711	-5.6545	-4.2245	Н	-1.5132	-5.9967	4.2245	Н	1.5132	5.9967	-4.2245	Н	-6.8711	5.6545	4.2245
С	8.5313	-6.7801	-3.9020	С	-3.1735	-4.8710	3.9020	С	3.1735	4.8710	-3.9020	С	-8.5313	6.7801	3.9020
Н	8.1353	-7.6085	-4.1446	Н	-2.7774	-4.0427	4.1446	Н	2.7774	4.0427	-4.1446	Н	-8.1353	7.6085	4.1446
С	4.3263	-3.7761	-1.9065	С	1.0316	-7.8751	1.9065	С	-1.0316	7.8751	-1.9065	С	-4.3263	3.7761	1.9065
Н	5.1818	-4.2554	-1.7724	Н	0.1761	-7.3958	1.7724	Η	-0.1761	7.3958	-1.7724	Н	-5.1818	4.2554	1.7724
Н	4.4730	-2.8238	-1.6769	Н	0.8849	-8.8274	1.6769	Η	-0.8849	8.8274	-1.6769	Н	-4.4730	2.8238	1.6769
С	3.9199	-3.8793	-3.3796	С	1.4380	-7.7719	3.3796	С	-1.4380	7.7719	-3.3796	С	-3.9199	3.8793	3.3796
Η	4.0374	-4.8136	-3.6828	Н	1.3205	-6.8375	3.6828	Н	-1.3205	6.8375	-3.6828	Η	-4.0374	4.8136	3.6828
Η	2.9611	-3.6501	-3.4660	Н	2.3968	-8.0011	3.4660	Н	-2.3968	8.0011	-3.4660	Η	-2.9611	3.6501	3.4660
С	4.7324	-2.9605	-4.2813	С	0.6254	-8.6907	4.2813	С	-0.6254	8.6907	-4.2813	С	-4.7324	2.9605	4.2813

Н	5.6794	-3.2493	-4.2581	Н	-0.3216	-8.4019	4.2581	Н	0.3216	8.4019	-4.2581	Н	-5.6794	3.2493	4.2581
Н	4.6910	-2.0402	-3.9175	Н	0.6668	-9.6110	3.9175	Н	-0.6668	9.6110	-3.9175	Н	-4.6910	2.0402	3.9175
С	4.2675	-2.9310	-5.7350	С	1.0904	-8.7202	5.7350	С	-1.0904	8.7202	-5.7350	С	-4.2675	2.9310	5.7350
Н	3.2980	-2.7296	-5.7583	Н	2.0599	-8.9216	5.7583	Η	-2.0599	8.9216	-5.7583	Н	-3.2980	2.7296	5.7583
Н	4.3984	-3.8276	-6.1323	Н	0.9594	-7.8236	6.1323	Η	-0.9594	7.8236	-6.1323	Н	-4.3984	3.8276	6.1323
С	5.0193	-1.8851	-6.5941	С	0.3386	-9.7661	6.5941	С	-0.3386	9.7661	-6.5941	С	-5.0193	1.8851	6.5941
Н	4.5268	-1.7568	-7.4442	Н	0.8310	-9.8944	7.4442	Η	-0.8310	9.8944	-7.4442	Н	-4.5268	1.7568	7.4442
Н	5.0211	-1.0198	-6.1143	Н	0.3368	-10.6314	6.1143	Η	-0.3368	10.6314	-6.1143	Н	-5.0211	1.0198	6.1143
С	6.4024	-2.2604	-6.9011	С	-1.0446	-9.3908	6.9011	С	1.0446	9.3908	-6.9011	С	-6.4024	2.2604	6.9011
Н	6.4010	-3.0377	-7.5139	Н	-1.0431	-8.6134	7.5139	Н	1.0431	8.6134	-7.5139	Н	-6.4010	3.0377	7.5139
Н	6.8598	-2.5305	-6.0666	Н	-1.5019	-9.1206	6.0666	Н	1.5019	9.1206	-6.0666	Н	-6.8598	2.5305	6.0666
С	7.2002	-1.0754	-7.5693	С	-1.8423	-10.5758	7.5693	С	1.8423	10.5758	-7.5693	С	-7.2002	1.0754	7.5693
Н	7.2328	-0.3140	-6.9514	Н	-1.8749	-11.3371	6.9514	Н	1.8749	11.3371	-6.9514	Н	-7.2328	0.3140	6.9514
Н	6.7508	-0.8048	-8.3975	Н	-1.3929	-10.8463	8.3975	Н	1.3929	10.8463	-8.3975	Н	-6.7508	0.8048	8.3975
Н	8.1126	-1.3690	-7.7731	Н	-2.7547	-10.2821	7.7731	Н	2.7547	10.2821	-7.7731	Н	-8.1126	1.3690	7.7731
Ν	4.3083	-7.7679	0.0450	Ν	1.0495	-3.8832	-0.0450	Ν	-1.0495	3.8832	0.0450	Ν	-4.3083	7.7679	-0.0450
0	5.3947	-6.2699	-1.2552	0	-0.0369	-5.3813	1.2552	0	0.0369	5.3813	-1.2552	0	-5.3947	6.2699	1.2552

3. X-ray analysis

Compound	1	2				
Chemical formula	C ₈₀ H ₇₂ N ₂ O ₂	$C_{40}H_{44}N_2O_2$				
Formula weight (g·mol ⁻¹)	1093.39	584.77				
Crystal system	Triclinic	Triclinic				
Space group	P-1	P-1				
a (Å)	9.9509(9)	5.6216(2)				
b (Å)	12.5238(11)	10.3184(4)				
c (Å)	13.0711(12)	27.8242(11)				
α (°)	83.788(4)	88.5483(10)				
β (°)	81.296(3)	87.7039(11)				
γ (°)	68.485(3)	81.9237(10)				
Volume (Å ³)	1495.5(2)	1596.36(11)				
Z	1	2				
Density (Mg m ⁻³)	1.214	1.217				
Temperature (K)	100	200				
F(000)	582	628				
Crystal size (mm ³)	0.065 x 0.025 x 0.005	0.386 x 0.077 x 0.045				
Meas. Refl.	18319	7312				
Indep. Refl.	5476	6485				
R(int)	0.0659	0.0913				
Final R indices	R = 0.0689	R = 0.1060				
$[I > 2\sigma(I)]$	$R_{\rm w} = 0.1897$	$R_{w} = 0.3253$				
Goodness-of-fit	1.042	1.122				
Δρ _{max} , Δρ _{min} (e Å ⁻³)	0.610, -0.462	0.411, -0.283				

 Table S13. Summary of crystal data for derivatives 1 and 2.

Figure S6. ORTEP at the 50 % probability level of the crystal structure of 1(left) and 2 (right).

Figure S7. Crystal packing within unit cells for 1 (top) and 2 (bottom).

Figure S8. Interactions within crystal lattice for 1 (top) and 2 (bottom).

4. H and ¹³C NMR spectra of new compounds

5. References

M. Grzybowski, I. Deperasińska, M. Chotkowski, M. Banasiewicz, A. Makarewicz, B. Kozankiewicz and D. T. Gryko, *Chem. Commun.*, 2016, 5108.
 B. Sadowski, M. F. Rode and D. T. Gryko, *Chem. Eur. J.*, 2018, 24, 855.
 B. Sadowski, H. Kita, M. Grzybowski, K. Kamada and D. T. Gryko, *J. Org. Chem.*, 2017, 82, 7254.