Supplementary Information for "Promising photovoltaic and

solid-state-lighting materials: two-dimensional Ruddlesden-

Popper type lead-free halide double perovskites

$Cs_{n+1}In_{n/2}Sb_{n/2}I_{3n+1}$ (n=3) and

$Cs_{n+1}In_{n/2}Sb_{n/2}CI_{3n+1}/Cs_{m+1}Cu_{m/2}Bi_{m/2}CI_{3m+1}$ (n=3, m=1)"

Meng Wu,^a Jun-jie Shi,^{*,a} Min Zhang,^b Yu-lang Cen,^a Wen-hui Guo^a and Yao-hui Zhu^c

^aState Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China ^bCollege of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, China ^cPhysics Department, Beijing Technology and Business University, Beijing 100048, China

*E-mail: jjshi@pku.edu.cn

Table S1 Values of the parameter *CUT* (in atomic units) and *l* together with the detailed half-ionized orbitals for M^+ , M^{3+} and X^- in our GGA-1/2 calculations are listed. Our *CUT* values for X^- are slightly smaller than those of ref. a-c (3.12, 3.34 and 3.76 for Cl⁻, Br⁻ and I⁻). This is because the anion *CUT* value usually has a small dependence on the chemical environment, as pointed out by Ferreira *et al.*^d

Atom	CUT	1	Half-ionized orbital	Atom	CUT	l	Half-ionized orbital
In ⁺	2.6	100	d	Sb ³⁺	2.8	90	d
Cu ⁺	2.8	100	d	Cl-	2.9	100	р
Ag ⁺	3.1	100	d	Br	3.1	100	р
Au ⁺	3.0	100	d	I-	3.4	100	р
Bi ³⁺	2.7	90	d				

^a J. Jiang, C. K. Onwudinanti, R. A. Hatton, P. A. Bobbert and S. Tao, *J. Phys. Chem. C*, 2018, **122**, 17660.

^b K. P. Marshall, S. Tao, M. Walker, D. S. Cook, J. Lloyd-Hughes, S. Varagnolo, A. Wijesekara, D. Walker, R. I. Walton and R. A. Hatton, *Mater. Chem. Front.*, 2018, **2**, 1515.

^c S. X. Tao, X. Cao and P. A. Bobbert, Sci. Rep., 2017, 7, 14386.

^d L. G. Ferreira, M. Marques and L. K. Teles, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2008, **78**, 125116.

Table S2 The dependence of the GGA-1/2 bandgap on the half-ionized orbitals of metal atoms in $Cs_2In_{1/2}Sb_{1/2}I_4$ and $Cs_2Cu_{1/2}Bi_{1/2}Cl_4$, in which the half ionization of the *p*-orbital in I and Cl atoms is included. Compared with the accurate GW bandgap, we can easily find that the correction of *d* orbital for both M⁺ and M³⁺ is necessary

Material	Half-ionized orbital	Bandgap (eV)			
	In: × Sb: ×	0.58			
$Cs_2In_{1/2}Sb_{1/2}I_4$	In: p Sb: ×	0.62			
	In: d Sb: ×	1.23			
	In: d Sb: p	1.40			
	In: d Sb: d	1.55, 1.55(GW)			
Cs ₂ Cu _{1/2} Bi _{1/2} Cl ₄	Cu: × Bi: ×	2.34			
	Cu: p Bi: ×	2.80			
	Cu: d Bi: ×	3.58			
	Cu: d Bi: p	3.64			
	Cu: d Bi: d	3.82, 3.82(GW)			

8						
$ Cs_2M+ 1/2M3+ 1/2 $	X	a		Cs ₂ M+ 1/2M3+ 1/2	Х	а
	Cl	11.2	11.22 Cl		11.00	
$Cs_2In_{1/2}Bi_{1/2}$	Br	11.7	73	Cs ₂ Cu _{1/2} Bi _{1/2}	Br	11.50
	Ι	12.3	12.32 I		Ι	12.36
	Cl	11.1	0	$Cs_2Cu_{1/2}Sb_{1/2}$	Cl	10.89
$Cs_2In_{1/2}Sb_{1/2}$	Br	11.6	50		Br	11.37
	Ι	12.2	28		Ι	12.34
	Cl	n=1 2D	10.98		Cl	
		bulk	10.78 ^{(exp)a}			11.51
		Cs ₂ AgBiCl ₆	10.85			
Ca Ag Di	Br	n=1 2D 11.53		Ca An Di		
CS2Ag1/2DI1/2		bulk	11.27 ^(exp) b	C52Au1/2D11/2	Br	11.95
		Cs ₂ AgBiBr ₆	11.30			
	Ι	12.3	36		Ι	12.64
$Cs_2Ag_{1/2}Sb_{1/2}$	Cl	10.8	37	$Cs_2Au_{1/2}Sb_{1/2}$	Cl	11.39
	Br	11.4	1		Br	11.82
	Ι	12.2	24		Ι	12.42

Table S3 Fully optimized lattice parameter *a* (in unit of Å) in lead-free n=1 halide Cs₂M+ 1/2M3+ 1/2X 4 double perovskites. Some previous experimental results in bulk phase are also given

^a E. T. Mcclure, M. R. Ball, W. Windl and P. M. Woodward, *Chem. Mater.*, 2016, 28, 1348.
^bA. H. Slavney, T. Hu, A. M. Lindenberg and H. I. Karunadasa, *J. Am. Chem. Soc.*, 2016, 138, 2138.

Figure S1 Energy band structures of n=1 lead-free halide double perovskites with direct bandgap (a) $Cs_2In_{1/2}Bi_{1/2}I_4$, (b) $Cs_2Cu_{1/2}Sb_{1/2}I_4$ and (c) $Cs_2Cu_{1/2}Bi_{1/2}I_4$, and indirect bandgap (d) $Cs_2Ag_{1/2}Bi_{1/2}I_4$, (e) $Cs_2Au_{1/2}Sb_{1/2}I_4$ and (f) $Cs_2Au_{1/2}Bi_{1/2}I_4$. Here, the band structures are derived from the GGA-PBE calculations, in which the underestimated bandgaps are modified according to GGA-1/2 calculations.

Figure S2 PDOSs of *n*=1 lead-free halide double perovskites with direct bandgap (a) $Cs_2In_{1/2}Bi_{1/2}I_4$, (b) $Cs_2Cu_{1/2}Sb_{1/2}I_4$ and (c) $Cs_2Cu_{1/2}Bi_{1/2}I_4$, and indirect bandgap (d) $Cs_2Ag_{1/2}Bi_{1/2}I_4$, (e) $Cs_2Au_{1/2}Sb_{1/2}I_4$ and (f) $Cs_2Au_{1/2}Bi_{1/2}I_4$.

Figure S3 The 2D double perovskite crystal structures of (a) n=2 Cs₃InSbI₇ and (b) n=3 Cs₄In_{3/2}Sb_{3/2}I₁₀ with the vertical distance of h=6.92 and 13.24 Å, respectively. Here, the stacking order of layered double perovskites, composed by the alternative M⁺X (pink) and M³⁺X (blue) octahedrons, is similar to their bulk counterparts.

Figure S4 Schematic illustration of the crystal structure of 2D lead-free halide double perovskite heterostructure. The different perovskite layers in the heterostructure are directly stacked together with a shift of b/2 along the b-axis just as the bulk RP-type perovskite. A suitable strain exists to match the lattice constants of different layers. The *d* represents the interlayer distance between two different layers in the heterostructure.

Material	Layer thickness	d	Lattice mismatch		
	n=1/m=1	5.51	0.45%		
	n=2/m=1	5.54	0.67%		
CsInSbCl/CsCuBiCl	<i>n</i> =1/ <i>m</i> =2	5.56	0.51%		
	<i>n</i> =2/ <i>m</i> =2	5.65	0.53%		
	<i>n</i> =3/ <i>m</i> =1	5.62	0.72%		
CsInBiCl/CsCuBiCl	n=1/m=1	5.58	0.98%		
CsInSbCl/CsAgBiCl	n=1/m=1	5.59	0.54%		
CsInBiCl/CsCuSbCl	n=1/m=1	5.57	1.47%		
CsAgSbBr/CsCuSbCl	n=1/m=1	5.64	2.27%		
CsAgSbBr/CsCuSbBr	n=1/m=1	5.78	0.17%		
CsAgSbI/CsCuSbI	n=1/m=1	5.69	0.41%		

Table S4 The interlayer distance d (Å) and lattice mismatch of all considered 2D RP-type lead-free halide double perovskite heterostructures

Figure S5 The weighted energy band structures of n=1/m=1 lead-free halide double perovskite heterostructures with type-II band alignment can be classified into two types, *i.e.*, direct bandgap (a) $Cs_2In_{1/2}Bi_{1/2}Cl_4/Cs_2Cu_{1/2}Bi_{1/2}Cl_4$, (b) $Cs_2In_{1/2}Sb_{1/2}Cl_4/Cs_2Ag_{1/2}Bi_{1/2}Cl_4$ and (c) $Cs_2In_{1/2}Bi_{1/2}Cl_4/Cs_2Cu_{1/2}Sb_{1/2}Cl_4$ and indirect bandgap (d) $Cs_2Ag_{1/2}Sb_{1/2}Br_4/Cs_2Cu_{1/2}Sb_{1/2}Cl_4$, (e) $Cs_2Ag_{1/2}Sb_{1/2}Br_4/Cs_2Cu_{1/2}Sb_{1/2}Br_4$ and (f) $Cs_2Ag_{1/2}Sb_{1/2}I_4/Cs_2Cu_{1/2}Sb_{1/2}I_4$. Here, the band structures are derived from the GGA-PBE calculations, in which the underestimated bandgaps are modified according to GGA-1/2 calculations.

Figure S6 The calculated imaginary parts ε_2 of dielectric function for freestanding n=1 (a) $Cs_2In_{1/2}Sb_{1/2}Cl_4$ and (b) $Cs_2Cu_{1/2}Bi_{1/2}Cl_4$.

Table S5 The carrier effective mass $m^*(m_0)$ and the predicted carrier mobility μ (cm²V⁻¹s⁻¹) in 2D lead-free *n*=1 halide double perovskite Cs₂M+ 1/2M3+ 1/2X 4 and their *n*=1/*m*=1 heterostructures

Material X m _h *		m _e *	μ_h	μ _e	Material	Х	m _h *	m _e *	μ_{h}	μ _e	
MAPbI ₃	Ι	0.30	1.14	0.24		MASnI ₃	Ι	0.22	1.10	0.18	
	Cl	0.52	1.09	40	25		Cl	0.85	0.90	26	10
$Cs_2In_{1/2}Bi_{1/2}$	Br	0.42	0.94	254	145	$Cs_2Cu_{1/2}Bi_{1/2}$	Br	0.81	0.88	76	58
	Ι	0.21	0.64	590	145		Ι	0.75	0.84	110	96
	Cl	0.45	1.08	86	72		Cl	0.80	0.84	150	121
$Cs_2In_{1/2}Sb_{1/2}$	Br	0.33	0.93	321	198	$Cs_2Cu_{1/2}Sb_{1/2}$	Br	0.74	0.82	230	165
	Ι	0.18	0.70	655	309		Ι	0.62	0.80	311	196
	Cl	0.85	1.02	30	11		Cl	0.96	1.05	40	14
$Cs_2Ag_{1/2}Bi_{1/2}$	Br	0.74	0.98	101	50	Cs ₂ Au _{1/2} Bi _{1/2}	Br	0.85	0.94	90	41
	Ι	0.66	0.93	210	121		Ι	0.76	0.86	160	100
	Cl	0.83	1.06	50	30		Cl	0.90	1.02	92	55
$Cs_2Ag_{1/2}Sb_{1/2}$	Br	0.71	1.02	111	41	$Cs_2Au_{1/2}Sb_{1/2}$	Br	0.81	0.89	160	117
	Ι	0.60	0.97	200	107		Ι	0.75	0.81	234	160
Cs ₂ In _{1/2} Sb _{1/2} Cl ₄ /		0.80	0.87	70	165	$Cs_2Ag_{1/2}Sb_{1/2}Br_4/$		0.76	0.72	330	90
$Cs_2Cu_{1/2}Bi_{1/2}Cl_4$						$Cs_2Cu_{1/2}Sb_{1/2}Cl_4$					
Cs ₂ In _{1/2} Bi _{1/2} Cl ₄ /		0.81	0.90	50	65	$Cs_2Ag_{1/2}Sb_{1/2}Br_4/$		0.74	0.81	395	110
$Cs_2Cu_{1/2}Bi_{1/2}Cl_4$						$Cs_2Cu_{1/2}Sb_{1/2}Br_4$					
Cs ₂ In _{1/2} Sb _{1/2} Cl ₄ /		0.85	0.42	50	122	Cs ₂ Ag _{1/2} Sb _{1/2} I ₄ /		0.56	0.89	598	224
$Cs_2Ag_{1/2}Bi_{1/2}Cl_4$						$Cs_{2}Cu_{1/2}Sb_{1/2}I_{4} \\$					
Cs ₂ In _{1/2} Bi _{1/2} Cl ₄ /		0.80	0.42	74	70						
$Cs_2Cu_{1/2}Sb_{1/2}Cl_4$											