Supporting Information

Chloride Treatments for High Efficient Aqueous-Processed CdTe Nanocrystal Based Hybrid Solar Cells

Shiyu Yao,^{a,b} Leijing Liu,^b Qingsen Zeng,^b Xiaohang Du,^b Chan Im,^e Yi Liu,^b Hao Zhang^b, Bai Yang,^b Tian Cui, *^{a,d} Wenjing Tian, *^{b,c}

^aCollege of Physics, Jilin University, Changchun 130012, PR China
^bState Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, P. R. China.
^cKey Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, Jilin University, Changchun 130012, PR China
^dState Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, P. R. China.
^eDepartment of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea

List of Contents

Figure S1. Molecular structure of the conjugated polymer PFBTBr.

Figure S2. Optical micrographs and pictures of the CdTe films with CdCl₂ (a, d) spincoat, (b, e) dip and (c, f) drop treatment.

Figure S3. The histograms of the PCEs for the devices without (a) and with (c) $CdCl_2$ treatment.

Figure S4. KPFM topology (left) and potential (right) images of the CdTe films without (a, b) and with (c, d) CdCl₂ treatment.

Figure S5. TG-DTG curves of PFBTBr.

 Table S1. Summary of the CdTe NCs based inorganic solar cells (ISCs), hybrid solar cells

 (HSCs) and quantum dot sensitized solar cells (QDSSCs) with literature reports.

Table S2. Photovoltaic performances of the cells with CdCl2 treatment applied in four different methods on the CdTe layer.

 Table S3. Photovoltaic performances of the cells with CdCl2 treatment applied on the CdTe

 and CdTe:PFBTBr layers through spincoat method.

 Table S4. Texture coefficients and the standard deviation of the cells without and with CdCl2

 treatment.

Calculation of the texture coefficients and standard deviation. The texture coefficients, C_{hkl} , were calculated using Equation (1). And the standard deviation σ of the texture coefficients was calculated from Equation (2). I_{hkl} is the intensity of the reflection from plane(hkl), $I_{r,hkl}$ is the relative intensity of planes for the powder, n_p is the number of reflections shown in the diffractogram. The results were summarized in Table S3.

$$C_{hkl} = \frac{\frac{I_{hkl}}{I_{r,hkl}}}{\frac{1}{n_p \sum_{n_p=1}^{n_p} \frac{I_{hkl}}{I_{r,hkl}}}}$$
(1)

$$\sigma = \sqrt{\sum 1/n_p (C_{hkl} - 1)^2} \tag{2}$$

Figure S1. Molecular structure of the conjugated polymer PFBTBr.

Figure S2. Optical micrographs and pictures of the CdTe films with CdCl₂ (a, d) spincoat, (b, e) dip and (c, f) drop treatment.

Figure S3. The histograms of the PCEs for the devices without (a) and with (c) CdCl₂ treatment.

Figure S5. TG-DTG curves of PFBTBr.

Material	Device	PCE	Solvent	Ref.
CdTe NRs	ISCs	3.00	Pyridine	<i>Science</i> 2005, 310 , 462-465.
CdTe NCs	HSCs	0.421	Chloroform: pyridine	Solar Energy Materials & Solar Cells 2006, 90 , 1849–1858.
$CdSe_{x}Te_{1-x}$ tetrapod	HSCs	1.13	Chloroform: pyridine	Nanotechnology 2006, 17 , 4041–4047
CdTe NPs	HSCs	0.06	Pyridine: chloroform	Solar Energy Materials & Solar Cells 2009, 93, 1482–1487
CdSe/CdTe- tetrapod	HSCs	0.62	Pyridine: chloroform	<i>Adv. Mater.</i> 2009, 21 , 4461–4466
CdTe QDs	QDSSCs	2.20	Water	Solar Energy Materials & Solar Cells 2010, 94, 2046–2051
CdTe NCs	HSCs	3.20	Chloroform: pyridine	<i>Adv. Mater.</i> 2011, 23 , 5451–5455
CdTe NCs	ISCs	6.90	Pyridine:1-propanol	Nano Lett. 2011, 11, 2856–2864
CdTe/CdS QDs	HSCs	3.80	Water	Chem. Sci. 2011, 2 , 1396
CdTe NCs	HSCs	0.86	Water	ACS Appl. Mater. Interfaces 2011, 3 , 2919–2923
CdTe NCs	HSCs	2.14	Water	Energy Environ. Sci. 2011, 4, 2831
CdTe NCs	ISCs	5.15	Pyridine:1-propanol	J. Mater. Chem. 2012, 22, 19207
CdTe NCs	ISCs	12.3	Pyridine:1-propanol	Nano Lett. 2014, 14, 670-675
CdSe/CdTe tetrapod	HSCs	3.30	Toluene	Adv. Funct. Mater. 2014, 24, 1904–1910
CdTe NCs	ISCs	11.3	Pyridine	ACS Nano 2014, 8, 9063-9072
CdTe/CdSe NCs	ISCs	5.81	Pyridine:1-propanol	J. Mater. Chem. C 2015, 3 , 42274234
CdTe NCs	ISCs	10.3	Pyridine	J. Am. Chem. Soc. 2016, 138 , 7464-7467
CdTe NCs	HSCs	3.61	Water	<i>Adv. Energy Mater.</i> 2013, 3 , 433–437
CdTe NCs	HSCs	3.30	Water	<i>Adv. Funct. Mater.</i> 2013, 23 , 4035–4042

Table S1. Summary of the CdTe NCs based inorganic solar cells (ISCs), hybrid solar cells(HSCs) and quantum dot sensitized solar cells (QDSSCs) with literature reports.

CdS/CdTe NCs	ISCs	3.98	Water	<i>Adv. Energy Mater.</i> 2014, 4 , 1400235		
CdTe NCs	HSCs	5.18	Water	J. Mater. Chem. A 2015, 3 , 10969–10975		
CdTe NCs	HSCs	4.32	Water	ACS Appl. Mater. Interfaces 2015, 7, 7146 7152		
CdSe _x Te _{1-x} NCs	ISCs	3.35	Water	ACS Appl. Mater. Interfaces 2015, 7, 23223-23230		
CdTe/CdS NCs	ISCs	6.56	Water	ACS Appl. Mater. Interfaces 2016, 8, 900- 907		
CdTe NCs	HSCs	4.32	Water	ACS Appl. Mater. Interfaces 2016, 8, 7101- 7110		
CdTe NCs	HSCs	5.90	Water	ACS Appl. Mater. Interfaces 2017, 9, 31345-31351		
CdTe NCs	HSCs	6.36	Water	Small 2017, 13, 1603771		
CdTe NCs	HSCs	4.80	Water	ACS Appl. Mater. Interfaces 2017, 9, 17942–17948		

	$V_{oc}(V)$	J _{sc} (mAcm ⁻²)	FF(%)	PCE(%)
w/o	0.620	16.34	44.29	4.49
Spincoat	0.638	20.76	45.34	6.01
Dip	0.606	18.00	41.29	4.50
Drop	0.587	9.65	31.60	1.78
Vapour	0.610	19.66	43.12	5.17

Table S2. Photovoltaic performances of the cells with $CdCl_2$ treatment applied in four different methods on the CdTe layer.

Table S3. Photovoltaic performances of the cells with $CdCl_2$ treatment applied on the CdTe andCdTe:PFBTBr layers through spincoat method.

	V _{oc} (V)	J _{sc} (mAcm ⁻²)	FF(%)	PCE(%)
w/o	0.620	16.34	44.29	4.49
CdTe	0.638	20.76	45.34	6.01
CdTe:PFBTBr	0.616	19.24	32.73	3.88

Table S4. Texture coefficients and the standard deviation of the cells without and with $CdCl_2$ treatment.

	C ₁₁₁	C ₂₂₀	C ₃₁₁	σ
w/o	1.28	0.88	0.84	0.20
CdCl ₂	1.88	0.53	0.74	0.53