Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supporting Information

A Robust and Flexible Thermal-Plasticizing 3D Shaped Composite Films with Invariable and Brilliant Structure Color Shu-Zhen Yu, Wen-Bin Niu, Su-Li Wu, Wei Ma, and Shu-Fen Zhang*

State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Linggong Rd., Dalian 116024, China.

TABLE S1. The different dosages of surfactant (Csurfactant) were used in the preparation of PBMB template. Thus the different diameter of PBMB and PBMB@SiO₂ were obtained via counting 200 individual particles in the TEM images of samples. And corresponding PDI and Zeta potential for PBMB@SiO₂ were measured by Dynamic Light Scattering.

Sample	C _{Surfactant} (Wt %)	Diameter of PBMB (nm)	Diameter of PBMB@SiO ₂ (nm)	PDI	Zeta potential (mV)
PBMB ₂₃₇ @SiO ₂	0.02	237	319	0.045	-27.2
PBMB ₂₁₅ @SiO ₂	0.06	215	271	0.020	-21.7
PBMB ₁₆₃ @SiO ₂	0.08	163	235	0.033	-15.9

^{*}To whom correspondence should be addressed.

^{*}E-mail: zhangshf@dlut.edu.cn

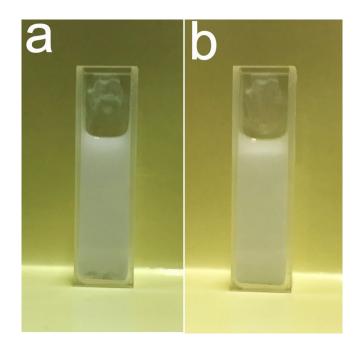


Figure S1. Digital images of PBMB@SiO₂ dispersion in ethanol. (a) just after preparation; (b) stored in ambient environment for 5 days

TABLE S2. Hollow silica spheres obtained. The air core diameter, shell thickness, and diameter for hollow silica PCs obtained by calcination of PBMB@SiO₂ PCs respectively

Sample	Core particle template	Air core diameter	Shell thickness	Diameter
	template	(nm)	(nm)	(nm)
Hollow silica ₂₈₆	PBMB ₂₃₇ @SiO ₂	193	32	286
Hollow silica ₂₄₂	PBMB ₂₁₅ @SiO ₂	174	17	242
Hollow silica ₂₀₅	PBMB ₁₆₃ @SiO ₂	160	28	205

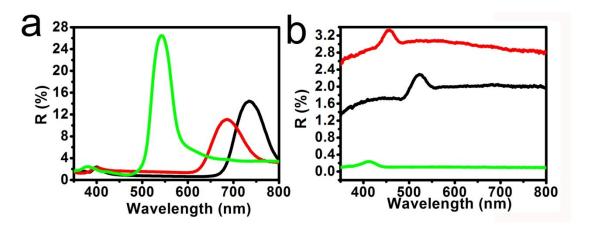


Figure S2. (a) the reflection spectra of the PCs of PBMB@SiO₂ with varying diameters: 319 nm (black), 271nm (red) and 235 nm (green) respectively.(b) Corresponding reflection spectra of the the PCs of hollow silica with varying diameters: 286 nm(black); 242 nm(red); 205 nm(green) respectively.

Figure S3.(a, d) Cross-sectional SEM images of the 271 nm PBMB@SiO $_2$ PCs with the layer of 9 μ m. (b, e) Cross-sectional SEM images of the corresponding 242 nm hollow silica PCs with the layer of 7 μ m. (c, f) Cross-sectional SEM images of the 242 nm hollow silica/PHMP composite film.

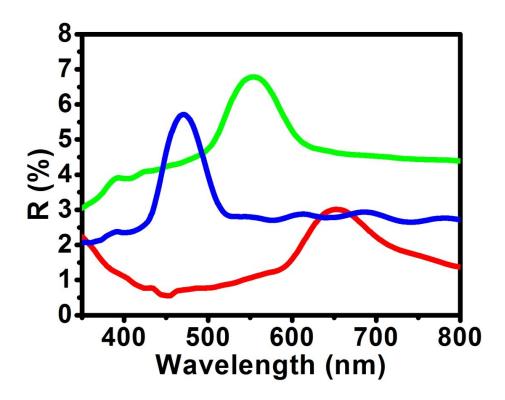


Figure S4. The reflection spectra of the hollow silica/PHMP composite films with varying diameters of hollow silica after storing in the air for 6 months.286 nm (red line). 242 nm(green line). 205 nm (blue line).

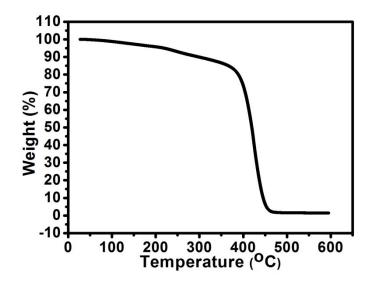


Figure S5 The TGA curve of the pure PHMP polymer.

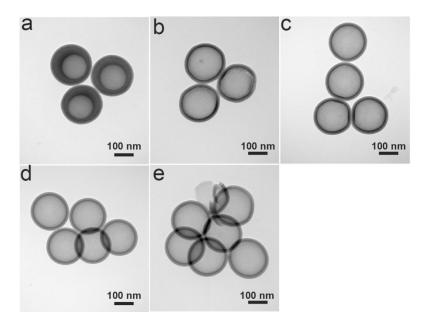


Figure S6. The TEM images of 271 nm PBMB@SiO₂ nanospheres after calcinations at different temperature: (a) 250 °C; (b) 350 °C; (c) 450 °C; (d) 550°C; (e) 650°C.

Table S3. Carbon content of hollow silica samples under different calcination

temperature. Calcination temperature (°C) 350 450 550 650 Carbon content (Wt %) 15.1 10.4 7.7 5.8

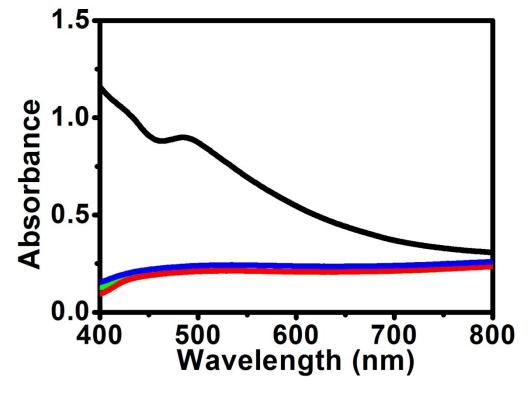


Figure S7. Absorption spectra of the solid powder of hollow silica obtained by

calcination at varying temperature 350 °C(black line); 450 °C(blue line); 550 °C (red line); 650 °C(green line).

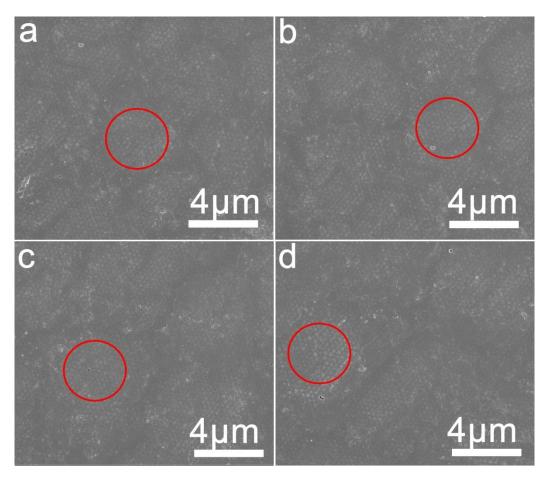


Figure S8. The SEM image of large-scale domains of the green composite film at different state: (a) original 2D flat-sheet. (b)2D flat-sheet after heating at 80 °C. (c) 3D tubelike state after 80 °C programming and 25 °C fixing of the shape. (d) The initial state of flat-sheet recovered from the tubelike shape by heating at 80 °C. The ordered arrays of hollow silica within the red circle.