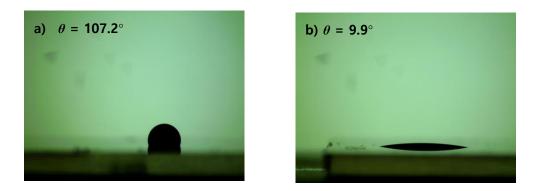
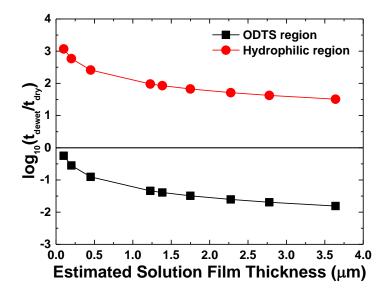
- Supplementary Information -

Liquid thin film dewetting-driven micropatterning of reduced graphene oxide electrodes for high performance OFETs

Sung Min Lee¹, Seung Keun Song¹, Seongwon Yoon², Dae Sung Chung²* and Suk Tai Chang¹*


¹School of Chemical Engineering and Materials Science, Chung-Ang University,

Seoul 06974, Republic of Korea


²Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and

Technology (DGIST), Daegu 42988, Republic of Korea

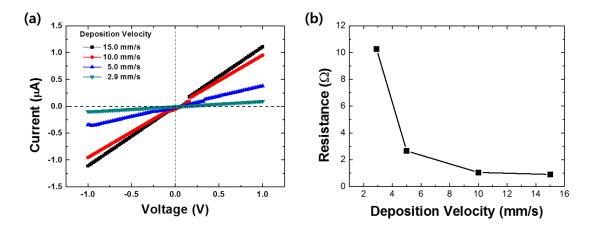

*E-mail: stchang@cau.ac.kr, dchung@dgist.ac.kr

Figure S1. Contact angle (θ) of 6.65 mg/mL GO solution on (a) ODTS-treated substrate and (b) UV-O₃ treated substrate.

Figure S2. Relative time scale of dewetting and drying times (t_{dewet}/t_{dry}) on hydrophilic and ODTS-treated regions as a function of the liquid thin film thickness estimated by equation (1).

Figure S3. (a) I-V characteristic plot and (b) corresponding resistance profile of the rGO line patterns prepared with different deposition velocities in Figure 3b.