Supporting information

Multiple Anti-counterfeiting Realized in NaBaScSi₂O₇ with A

Single Activator of Eu²⁺

Zhichao Liu^a, Lei Zhao^b, Wenbo Chen^{c*}, Xiaotong Fan^a, Xiuxia Yang^a, Shuyu Tian^a, Xue Yu^a, Jianbei Qiu^{a*} and

Xuhui Xu^a*

^a College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093,

P. R. China

^b School of Physics and Opto-Electronic Technology, Baoji University of Arts and Sciences, Baoji 721016,

Shaanxi, People's Republic of China

c Engineering Research Center of New Energy Storage Devices and Applications, Chongqing University of Arts

and Sciences, Chongqing, 402160, P. R. China

Corresponding Author: Xuhui Xu E-mails: xuxuh07@126.com

Xue Yu E-mails: yuyu6593@126.com

Fig. S1 SEM images microcrystal particles, the enlarged single particle, EDS elemental mapping of the NaBa_{0.975}ScSi₂O₇: 0.015Eu²⁺, 0.01Nd³⁺; (b) NaBa_{0.9725}ScSi₂O₇: 0.015Eu²⁺, 0.0125Pr³⁺ for different elements.

Fig. S2 SEM images microcrystal particles, the enlarged single particle and EDS elemental mapping for different elements of the NaBa_{0.975}ScSi₂O₇: 0.015Eu²⁺, 0.01Nd³⁺; (b) NaBa_{0.9725}ScSi₂O₇: 0.015Eu²⁺, 0.0125Pr³⁺.

Fig. S3 TL curve of $NaBa_{0.98}ScSi_2O_7$: $0.02Eu^{2+}$ (a); and TL curves of $NaBaScSi_2O_7$: Eu^{2+} , $NaBaScSi_2O_7$: Eu^{2+} , Nd^{3+} , $NaBaScSi_2O_7$: Eu^{2+} , Pr^{3+} (b).

Fig. S4 PL spectra with normalized blue emission (a, c) and normalized green emission (b, d) of NaBa_{0.985}. $_{v}$ ScSi₂O₇: 0.015Eu²⁺, yNd³⁺ phosphors under the excitation of 290 and 308 nm, respectively.

Fig. S5 PL spectra with normalized blue emission (a, c) and normalized green emission (b, d) of $NaBa_{0.985-}$ _vScSi₂O₇: 0.015Eu²⁺, yPr³⁺ phosphors under the excitation of 290 and 308 nm, respectively.

Fig. S6 PL, PSL spectra of $NaBa_{0.975}ScSi_2O_7$: $0.015Eu^{2+}$, $0.01Nd^{3+}$ (a); and PL, LPL spectra of $NaBa_{0.9725}ScSi_2O_7$: $0.015Eu^{2+}$, $0.0125Pr^{3+}$ (b).

Fig. S7 TL curves of NaBa_{0.975}ScSi₂O₇: $0.015Eu^{2+}$, $0.01Nd^{3+}$ (a) and NaBa_{0.9725}ScSi₂O₇: $0.015Eu^{2+}$, $0.0125Pr^{3+}$ (c) under 254 and 365 nm excitation with different irradiation time; TL decay curves of NaBa_{0.975}ScSi₂O₇: $0.015Eu^{2+}$, $0.01Nd^{3+}$ (b) and NaBa_{0.9725}ScSi₂O₇: $0.015Eu^{2+}$, $0.0125Pr^{3+}$ (d).

Fig. S8 Persistent decay curves (a) and Time dependence of the reciprocal of the persistent luminescence intensity (b) of NaBa_{0.975}ScSi₂O₇: 0.015Eu²⁺, 0.01Nd³⁺ and NaBa_{0.9725}ScSi₂O₇: 0.015Eu²⁺, 0.0125Pr³⁺ after UV light (254 and 365 nm) irradiation for 20 min.

X	0.015	0.02	0.03	0.04	0.045	0.05
τ (421nm)	4.577µs	4.312µs	4.211µs	4.119µs	3.940µs	3.719µs
τ (500nm)	3.151µs	4.216µs	4.477µs	4.715µs	4.781µs	4.839µs

Table S1. The lifetimes of NaBa_{1-x}ScSi₂O₇: xEu²⁺ phosphors.