Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supporting Information

A Highly Efficient and Thermally Stable Green Phosphor Lu₂SrAl₄SiO₁₂:Ce³⁺ for Full-spectrum White LEDs

Yu Xiao,^{a,b} Wenge Xiao,^{*c} Liangliang Zhang,^{*a} Zhendong Hao,^a Guo-Hui Pan,^a Yang Yang, ^{a,b} Xia Zhang,^a Jiahua Zhang^{*a}

- a State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern South Lake Road, Changchun 130033, China
- b University of Chinese Academy of Sciences, Beijing 100049, China
- c College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China

*E-mail: wengsee@163.com zhangliangliang@ciomp.ac.cn zhangjh@ciomp.ac.cn

1.1 Experimental details

1.2 Materials synthesis

The samples, Lu₂SrAl₄SiO₁₂:Ce³⁺ (LSAS:Ce³⁺), was prepared by the traditional high-temperature solid-state reaction. The starting mateials SrCO₃(G.R.), Lu₂O₃(99.99%), Al₂O₃(G.R.) and CeO₂(99.99%) were weighted stoichiometrically according to the composition of Lu_{2(1-x)}SrAl₄SiO₁₂:xCe³⁺ (x = 1%, 4%, 6%, 8% and 10%). The raw materials were mixed thoroughly in an agate mortar, and then placed in an alumina crucible. These crucible were put into the tube furnace and sintered at 1400 °C for three hours in a reducing atmosphere of 5% H₂+95% N₂, and then cooled down at the rate of 5 °C/min. Finally, all the samples were ground into powders for the following characterization.

1.3 Characterization

The element composition was analyzed by an energy-dispersive spectrometer coupled to a field emission scanning electron microscopy (FESEM, Hitachi, S-4800). The crystal structure was identified by X-ray power diffraction (XRD) on a Bruker D8 Focus diffractometer with Cu Ka radiation (λ =1.54056 Å) operated at 40 kV and 40 mA. The XRD data were collected with step size of 0.02° and count time of 2 s/step in the 2 θ range from 10° to 90° . Structure refinement was conducted by the Rietveld method using the FullProf program. The photoluminescence (PL) and photoluminescence excitation (PLE) spectra were measured by Hitachi F-7000 spectrometer equipped with a 150 W xenon lamp under a working voltage of 700 V. The electroluminescence spectra, color rendering index, correlated color temperature (CCT) and luminous efficiency of the fabricated pc-WLEDs were obtained from an integrated test system (EVERFINE, China) including photoelectric characteristic testing system, high precision fast spectral radiometer (HAAS-2000), dc stabilized current power supply and a rotating integral ball. PL quantum efficiency (QE) was measured directly by the absolute PL quantum yield measurement system using a spectralon-coated integrating sphere (FL980, Edinburg Instruments, UK). The temperature-dependent PL spectra were obtained by the measurement system containing using a heating stage (Linkam THMS-600) and a QEPro high performance spectrometer (Ocean Optics) which gives the time-integrated intensities.

Temperature/K	300 K
Space group	$Ia\bar{3}d$
Lattice parameters	
<i>a</i> /Å	11.91417
<i>b</i> /Å	11.91417
<i>c</i> /Å	11.91417
$V/Å^3$	1691.187
R _p (%)	5.77
R _{wp} (%)	10.36
χ^2	4.84

Table S1. Rietveld refinement of LSAS:6%Ce³⁺

Fig. S1 EDS spectrum of LSAS:6%Ce³⁺

Element	wt%	at%
Sr	12.32	06.50
Lu	46.34	12.24
Al	16.26	27.85
Si	06.61	10.86
0	14.25	41.17
Ce	04.22	01.39

Table S2. The result of EDS analysis of LSAS:6%Ce³⁺

Fig. S2 PL spectra (a), and the dependence of PL intensities on Ce^{3+} concentration for LSAS: *x* Ce^{3+} (*x*=1%, 4%, 6%, 8% and 10%) under 448 nm excitation (b).

Fig. S3 The ratio of PL intensity at 490 nm to 514 nm under 448 nm excitation for LASA: Ce^{3+}

Fig. S4 Emission spectra inside the integrating sphere without and with the $LSAS:6\%Ce^{3+}$ phosphor upon 448 nm excitation.