Electronic Supporting Information

Bipolar magnetism in two-dimensional NbS₂ semiconductor with high Curie temperature

Yingjie Sun,^{a,b} Zhiwen Zhuo,^b and Xiaojun Wu^{b,*}

- a School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
- b Hefei National Laboratory of Physical Sciences at the Microscale, Synergetic Innovation of Quantum Information & Quantum Technology, School of Chemistry and Materials Sciences, and CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China.
- □ <u>xjwu@ustc.edu.cn</u> (X.J. Wu)

Fig. S1 Electronic structure calculated for NbS₂ monolayer at the PBE level.

Fig. S2 Magnetic orders in NbS₂ monolayer (a) Ferromagnetic (FM). (b) antiferromagnetic (AFM)

Fig. S3 Relative energy of AFM and FM states under the variation of carrier concentration for 2D NbS₂ nanosheet. The positive and negative values are for electron and hole doping, respectively.

Table S1 The optimized lattice constant (a in unit of Å), S-S bond length (d_{s-s} in unit of Å) and Nb-S bond length (d_{Nb-S} in unit of Å), local magnetic moment on per Nb atom (M, in unit of μ B), and energy difference between FM and AFM states (Δ E, in unit of meV) are summarized.

Strain (%)	-9	-5	0	5	10
a (Å)	3.041	3.175	3.342	3.509	3.676
$d_{S-S}(Å)$	3.32	3.23	3.12	3.04	2.96
d _{Nb-S} (Å)	2.42	2.44	2.48	2.53	2.59
$M(\mu B)$	0.72	0.76	0.80	0.84	0.88
$\Delta E (meV)$	13.1	32.0	40.7	51.8	78.5

Fig. S4 Biaxial strain dependence of (a)relative energy of AFM and FM states in the 2D NbS₂ crystal. (b) S-S bond length and Nb-S bond length, and (c) magnetic moment on per Nb atoms.

all set to zero.

Fig. S6 The simulated magnetic moment (M) and specific heat (C_v) with respect to temperature for (a) hole doping with the carrier concentration of 1.55×10^{14} cm⁻², and (b) a tensile strain of 10%.