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S1 – Synthesis 
 

10,15-dihydro-5H-diindolo[3,2-a:3',2'-c]carbazole (2).  
A mixture of oxindole (10 g, 75 mmol) and POCl3 (50 mL) was heated at 100 °C for 6h. The cooled 
reaction mixture was slowly poured into crushed ice water so that a temperature of less than 10 °C 
was maintained. This mixture was neutralized carefully with a saturated KOH solution added in 
small quantities so that a temperature of less than 10 °C was maintained. After neutralization, the 
precipitate was filtered to give the crude product as a brown solid. The crude solution in MeOH was 
absorbed on silica-gel, dried, loaded and eluted through a thick silica-gel pad with a CH2Cl2 as a 
mobile phase. After evaporation of the solvent at reduced pressure and recrystallization from 
acetone, a white solid was obtained. (5.5 g, 65 %). 1H NMR (400 MHz, DMSO-d6) δ 11.86 (s, 3H), 
8.68 (d, J = 7.6 Hz, 3H), 7.73 (d, J = 7.8 Hz, 3H), 7.41 – 7.32 (m, 6H). 13C NMR (100 MHz, 
DMSO-d6) δ 141.0, 135.3, 123.6, 124.1, 120.9, 120.4, 111.8, 103.1. C24H15N3[M+H+] Exact Mass 
= 346.1341, MS (FTMS + p NSI) = 346.1341. 
 

5,10,15-trihexyl-10,15-dihydro-5H-diindolo[3,2-a:3',2'-c]carbazole (3). To a solution of (1) (1 g, 
2.90 mmol, 1 eq.) in DMF (20 mL), NaH (0.2 g, 10.2 mmol, 3.5 eq.) was added at room 
temperature and stirred for half hour. Then 1-iodohexane (2.46 g, 11.6 mmol, 4 eq.) was added via a 
syringe and the mixture was heated at 160 °C i.e. refluxed for 2h. The cooled mixture was poured 
into water and extracted with CH2Cl2. The organic phase was dried over MgSO4. The product was 
isolated off on a silica gel column with 20 % CH2Cl2 in petroleum ether to give (3) as a pale yellow 
solid (1.3 g, 75%). 1H NMR (400 MHz, Chloroform-d) δ 8.21 (d, J = 8.0 Hz, 3H), 7.55 (d, J = 8.1 
Hz, 3H), 7.37 (t, J = 7.6 Hz, 3H), 7.25 (t, J = 7.5 Hz, 3H), 4.92-4.76 (m, 6H), 1.90 (dt, J = 15.4, 7.8 
Hz, 6H), 1.23 – 1.11 (m, 18H), 0.79 (t, J = 6.9 Hz, 9H). 13C NMR (100 MHz, Chloroform-d) δ 
13.83, 20.44, 24.70, 29.05, 31.06, 43.70, 106.14, 109.32, 119.60, 118.84, 120.55, 126.60, 138.14, 
139.19. C42H51N3[M+H+] Exact Mass = 598.4158, MS (FTMS + p NSI) = 598.4158. 
 

3,8,13-tribromo-5,10,15-trihexyl-10,15-dihydro-5H-diindolo[3,2-a:3',2'-c]carbazole (4). 
To a solution of (3) (1 g, 1.66 mmol, 1 eq.) in 90 mL CHCl3, (915 mg, 5.15 mmol, 3.1 eq.) of NBS 
in 15 mL DMF was added dropwise via a syringe at 0 oC. After addition, the reaction mixture was 
stirred for 1h at room temperature. The mixture was extracted with CH2Cl2 and the organic phase 
was dried over MgSO4. The product was isolated on a silica gel column with 10 % CH2Cl2 in 
petroleum-ether to give a product as a white solid (1.35 g, 82%). 1H NMR (400 MHz, Chloroform-
d) δ 8.03 (s, 3H), 7.71 (s, 3H), 7.33 (d, J = 7.1 Hz, 3H), 4.65 – 4.59 (m, 6H), 1.83 – 1.62 (m, 6H), 
1.35 – 1.14 (m, 18H), 0.72 (m, 9H). 13C NMR (400 MHz, Chloroform-d) δ 127.3, 123.4, 122.2, 
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123.0, 121.1, 120.6, 112.1, 111.0, 52.6, 45.3, 30.7, 28.3, 25.7, 21.6, 12.1. C42H48Br3N3[M+H] Exact 
Mass = 832.1486, MS (+ive ESI-QTOF) = 832.1486. 

S1a NMR spectrum of (2) 

 

 

 

 

 

 

 

 

 

 

 

 

S1b NMR spectrum of (3) 
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S1c NMR spectrum of (4) 
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S2 Full 1H NMR Spectrum for TAT-tBuSty with peak picking and integration analysis  

 

4.
47

23
.1

2

2.
11

2.
59

2.
53

1.
66

3.
13

1.
15

1.
00

0.
80

0.
82

0.
84

0.
85

0.
87

1.
30

1.
43

2.
02

2.
03

4.
92

4.
94

4.
95

4.
97

4.
99

7.
06

7.
08

7.
33

7.
34

7.
57

7.
59

7.
76

8.
27

8.
29

CH2Cl2 

Peaks for trace di-substituted 
TAT-tBuSty  



5 
 

S2.1 Theoretical estimation of 1H NMR peaks  
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S2.2 Expansion of aromatic resonance region of 1H NMR spectrum of TAT-tBuSty with peak picking and integration analysis  
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S2.3 Expansion of methylene and methyl resonance region of 1H NMR spectrum of TAT-tBuSty with peak picking and integration 
analysis 
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S2.4 13C NMR Spectrum for TAT-tBuSty with peak picking 

 
 

0102030405060708090100110120130140150160170180
f1 (ppm)

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500
Feb03-2017-TECH
Supervisor Name PJH
TATB
C13CPD.b CD2Cl2 {C:\Bruker\TopSpin3.2} TECH 25



9 
 

S2.5 Theoretical estimation of 13C NMR Spectrum for TAT-tBuSty 
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S3 High Resolution Mass Spectrometry of TAT-tBuSty analysed using positive electrospray 
 

 

The loss of one tertiary butoxy 
styrene group produces C66H80N3O2 
Found 946.6242, Calc. 946.6245 
 

Oxidation (+2O) during MS 
analysis gives C66H80N3O2 

Found 978.6142, Calc. 978.6143 
 

Higher mass ions due to oxidation 
during MS analysis 
 

M+ is C78H94N3O3  

Found 1120.7284, Calc. 1120.7290 
 

M+ plus 2O is C78H94N3O5  

Found 1152.7183, Calc. 1152.7188 
 

M+ plus 3O is C78H94N3O6  

Found 1168.7131, Calc. 1152.7137 



11 
 

S3.1 Observed data & theoretical isotope pattern from positive electrospray high resolution mass spectrometry of TAT-tBuSty  
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S4 -  Route 1 Cost Analysis Table for TAT-tBuSty  
* = trans-di(m-acetato)bis[O-(di-o-tolylphosphino)benzyl]diPd(II) 
 

Chemical Reagent 
mass (g) 

Solvent 
Vol. 
(ml) 

Reagent 
cost ($/g) 

Solvent 
cost ($/ml) 

Reagent + 
solvent cost ($) 

Product 
cost ($/g) 

Oxindole  10   2.29   22.9   

POCl3  150   0.13   19.7   

NaOH  250   0.013   3.3   

Anhydrous MgSO4 10   0.066   0.7   

Silica  200   0.13   26.2   

Methanol   500   0.013 6.6   

CH2Cl2   5500   0.013 72.1   

Total  620 6000     151.5   

Product step 1 (Yield = 65%, 5.5g) 27.5 

Sodium Hydride  0.2   2.18   0.43   

Anhydrous DMF    2   0.08 0.16   

Iodohexane  2   0.4   0.86   

Anhydrous MgSO4 1   0.066   0.066   

Silica  20   0.13   2.62   

Petroleum-Ether    500   0.013 6.55   

Dichloromethane    100   0.013 1.31   

Total  23.2 652 2.80 0.1    

Product step 2 (Yield = 75%, 1.3g)  9.2 

N-Bromosuccinimide  1   0.09   0.09   

Anhydrous CHCl3   90   0.066 5.9   

Anhydrous DMF   15   0.08 0.12   

Anhydrous MgSO4 1   0.066   0.066   

Silica  20   0.13   2.62   

Petroleum-Ether    500   0.013 6.55   

Dichloromethane    125   0.013 1.64   

Total  22 730     17   

Product step 3 (Yield = 82%, 1.35g)  12.6 

Tertiary butoxystyrene 0.68   1.3   0.89   

Anhydrous 
CH3CON(CH3)2  

  10   0.08 0.8   

Anhydrous Na2CO3 0.25   0.066   0.013   

Pd cat* 0.045   101   4.55   

Magnesium MgSO4 0.5   0.066   0.04   

Silica  20   0.13   2.62   

Dichloromethane    125   0.013 1.64   

Petroleum ether    500   0.013 6.55   

Total  21.48 635     17.1   

Product step 4 (Yield = 95%, 0.83g)  20.6 

Total solvent mass & 
vol.  

686.68 8017        

Product Cost             69.9 
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S4.1 - Route 1 Cost Analysis Table for SP12  
* [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II) 
 

Chemical Name  
Reagent 
mass (g) 

Solvent 
Vol. (ml) 

Reagent 
cost ($/g) 

Solvent 
cost 

($/ml) 

Reagent + 
solvent cost 

($) 

Product 
cost 
($/g) 

Oxindole  10   2.29   22.9   

POCl3  150   0.13   19.7   

NaOH  250   0.013   3.3   

Anhydrous MgSO4 10   0.066   0.7   

Silica  200   0.13   26.2   

Methanol   500   0.013 6.6   

Dichloromethane    5500   0.013 72.1   

Total  620 6000     151.5   

Product step 1 (Yield = 65%, 5.5g)  27.5 

Sodium Hydride  0.2   2.18   0.43   
Anhydrous DMF    2   0.08 0.16   
Iodoethane  2   0.4   0.86   

Anhydrous MgSO4  1   0.066   0.066   

Silica  20   0.13   2.62   

Petroleum-Ether    500   0.013 6.55   

Dichloromethane    100   0.013 1.31   
Total  23.2 652 2.80 0.1    
Product step 2 (Yield = 75%, 1.3g)  9.2 

N-Bromosuccinimide  1   0.09   0.09   

Anhydrous CHCl3   90   0.066 5.9   

Anhydrous DMF   15   0.08 0.12   

Anhydrous MgSO4 1   0.066   0.066   
Silica  20   0.13   2.62   
Petroleum ether    500   0.013 6.55   

CH2Cl2    125   0.013 1.64   

Total  22 730     17   

Product step 3 (Yield = 82%, 1.35g)  12.6 
Paramethoxybenzene Boronic 
Acid  

0.61   13.1   8 
  

Anhydrous Toluene   10   0.026 0.26   

Anhydrous Methanol   5   0.026 0.13   

Pd catalyst* 0.072   22.3   1.6   

Anhydrous MgSO4 0.5   0.066   0.04   

Silica  20   0.13   2.62   

CH2Cl2   300   0.013 3.9   
Petroleum ether    900   0.013 11.8   
Total  21.18 1215     28.35   
Product step 4 (Yield = 86%, 0.64g)  44.3 

Total mass & solvent volume  686.382 8597        

Product Cost            93.6 
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S4.2 - Synthesis of TAT-tBuSty via route 2 
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S4.3 Route 2 Cost Analysis Table for TAT-tBuSty 
* Trans-di(m-acetato)bis[O-(di-o-tolylphosphino)benzyl]dipalladium(II) 
 

Chemical Name 
Reagent 
mass (g) 

Solvent 
Vol. 
(ml) 

Reagent 
cost ($/g) 

Solvent 
cost ($/ml) 

Reagent + 
solvent cost ($) 

Product 
cost ($/g) 

5-Bromoisatin  10   0.77   7.7   

Sodium Hydride  1.06   2.17   2.31   

Anhydrous DMF   200   0.08 15.7   

Iodohexane  46.9   0.43   20.3   

Petroleum ether   250   0.013 3.3   

Total  57.96 450     49.3   

Product step 1 (Yield = 90%, 12.3g)  4 

Hydrazine Hydrate  39   0.09   3.68   

HCl(aq)  10   0.013 0.13 0.13   

Total  49       3.81   

Product step 2 (Yield = 64%. 2.73g)  1.4 

              

POCl3  50   0.13   6.55   

NaOH  250   0.013   3.28   

Anhydrous MgSO4 10   0.066   0.66   

Silica  200   0.13   26.2   

Methanol   500   0.013 6.55   

CH2Cl2   5500   0.013 72.05   

Total  510 6000     115.3   

Product step 3 (Yield = 65%, 5.5g)  21 

Tertiary butoxystyrene 0.68   1.3   0.9   
Anhydrous 
Dimethylacetamide 

  10   0.08 0.8   

Anhydrous Na2CO3 0.25   0.066   0.013   

Pd catalyst * 0.045   101   4.55   

Anhydrous MgSO4 0.5   0.066   0.04   

Silica  20   0.13   2.62   

CH2Cl2   125   0.013 1.64   

Petroleum ether    500   0.013 6.55   

Total  21.475 635     17.1  

Product step 4 (Yield = 95%, 0.83g)  20.6 

Total solvent mass & 
volume  

638.435 7085        

Product Cost            47  
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S4.4 Summary of the donor group cost (Sigma Aldrich®) and coupling reaction yields 
for triazatruxene HTMs used to prepare perovskite devices with η > 18%  
 

HTM Donor group 
Donor group 

molecular 
structure 

Donor gp 
cost (£ g-1) 

Yield 
(%) 

TAT-tBuSty† 

 
Tert-butoxystyrene 

 
 
 

1 95 

Trux-OMeTADESI1 
Dimethoxy-

diphenylamine 

 
 
 

16 70 

K131ESI2 
Dimethoxy-

diphenylamine 

 
 
 
 

16 45 

SP-12ESI3 
4-methoxy-

phenylboronic acid 

 
 
 
 
 

10 86 
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† This work 
ESI1 Huang, C.; Fu, W.; Li, C-Z.; Zhang, Z.; Qiu, W.; Shi, M.; Heremans, P.; Jen, A. K-Y.; 
 Chen, H. J. Am. Chem. Soc. 2016, 138, 2528−2531. 
ESI2  Rakstys, K.; Abate, A.; Dar, M.I.; Gao, P.; Jankauskas, V.; Jacopin, G.; Kamarauskas, 
 E.; Kazim, S.; Ahmad, S.; Grätzel, M.; Nazeeruddin, M.K. J. Am. Chem. Soc. 2015, 
 137, 16172−16178.   
ESI3 Su, P-Y.;  Huang, L-B.;  Liu, J-M.;  Chen, Y-F.;  Xiao, L-M.;  Kuang, D-B.; Mayor, 
M.;  Su, C.-Y. J. Mater. Chem. A. 2017, 5, 1913-1918. 
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S5 Differential Scanning Calorimetry for the first (a) and second (b) heating cycles of 
TAT-tBuSty (solid line) and spiro-OMeTAD (dashed line).  
Heating at 10oC under N2. Endothermic peaks are up 
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S6 - Contact angle measurements of water on (a) TAT-tBuSty and (b) spiro-OMeTAD 
thin films 
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S7.1 - External calibration of electrochemistry using ferrocene (a) CV and (b) square wave voltammetry 
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S7.2 - Electrochemistry of (3) showing (a) CV and (b) square wave voltammetry and of (5) showing (c) CV and (d) square wave 
voltammetry 
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S7.3 Cyclic and square wave voltammograms of 3 and 5 (0.1mM) in dry DCM with 
NBu4PF6 (0.1M) as supporting electrolyte. Positive sweep at 0.1V.s-1 
 

Sample 
CV SWV 

IP (V) EA (V) IP (V) EA (V) 

(3) 
0.401 ∂: 65 mV 

(–5.2 eV) 
irreversible 

0.360 V  
(–5.2 eV) 

–1.564 V  
(–3.2 eV) 

(5) 
0.322 ∂: 83 mV 

(–5.1 eV) 
irreversible 

0.284 V  
(–5.1 eV) 

–1.508 V  
(–3.3 eV) 

 
 
 
 

 
S8.1 Device performance using Spiro-OMeTAD and TAT-tBuSty as HTM layers. J–V 
characteristics of optimized perovskite solar cells with FTO/SnO2/perovskite/HTM/Au device 
structure, scanned from forward bias (FB) to short circuit (SC) and back again at a scan rate 
of 0.38 V s-1. Corresponding device characteristics are given in the embedded table. 
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S8.2 A comparison of the current-voltage parameters for TAT-tBuSty with the next best 

performing truxene and triazatruxenes reported to date. Data for spiro-OMeTAD 
reported in side by side studies are also included. 

 
HTM    Scan η (%) Voc (V) Jsc (mA cm-2) FF 

TAT-tBuSty† 
R 
F 

20.3 
15.7 

1.15 
1.07 

22.1 
22.2 

0.80 
0.66 

Trux-OMETADESI1 
 
Spiro-OMETAD 

R 
F 
R 

18.6 
17.5 

16.3 

1.02 

1.02 

0.99 

23.2 

23.4 

23.0 

0.79 

0.74 

0.72 

KR131ESI2 
 
Spiro-OMETAD 

R 
F 
R 
F 

18.3 

17.0 

17.9 

16.3 

1.15 

1.15 

1.09 

1.06 

20.7 
20.6 

22.3 

22.3 

0.77 

0.72 

0.74 

0.69 

SP-12ESI3 
 
Spiro-OMETAD 

R 
F 
R 
F 

18.8 

16.7 

16.9 

15.0 

1.08 

1.04 

1.02 

0.98 

22.8 
22.8 

21.6 

21.5 

0.77 

0.70 

0.77 

0.71 

HPDIESI4 
Spiro-OMETAD 

R 
 
R 

10.8 

12.9 
0.98 

0.94 
19.2 

19.6 
0.58 

0.69 

TBDIESI5 
 
PEDOT:PSS/polyTPD* 

R 
F 
- 

14.9 

14.9 

15.3 

1.09 

1.09 

1.08 

18.7 

18.7 

18.5 

0.73 

0.73 

0.76 
 

† = this work, * Poly(N,N'-bis-4-butylphenyl-N,N'-bisphenyl)benzidine, R and F stand for 
reverse scan and forward scan, respectively. 

 
ESI4. Ramos, F.J.; Rakstys, K.; Kazim, S.; Grätzel, M.; Nazeeruddin, M.K.; Ahmad, S. RSC 
Adv. 2015, 5, 53426-53432. 
ESI5. Calió, L.; Momblona, C.; Gil-Escrig, L.; Kazim, S.; Sessolo, M.; Sastre-Santos, Á.; 
Bolink, H. J.; Ahmad, S. Solar Energy Mater. Solar Cells. 2017, 163, 237–241.  
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S9 X-ray diffraction data for films of (a) spiro-OMeTAD and (b) TAT-tBuSty on FTO 
glass from Solaronix. The plain FTO substrate is shown in (c). These data confirm that 
no crystalline peaks are observed for either of these HTM films on FTO 
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S10 HTM abbreviations 
 
From Nazeeruddin et al., J. Am. Chem. Soc. 2015, 137, 16172−16178.   
(K122) 5,10,15-trihexyl-3,8,13-trimethoxy-10,15-dihydro-5H-diindolo[3,2-a:3′,2′-
c]carbazole  
(K131) 5,10,15-trihexyl-3,8,13-tris(4-methoxyphenyl)-10,15-dihydro-5H-diindolo[3,2-
a:3′,2′-c]-carbazole  
(K133) 4,4′,4″-(5,10,15-trihexyl-10,15-dihydro-5Hdiindolo[3,2-a:3′,2′-c]carbazole-3,8,13-
triyl)tris(N,N-bis(4-methoxyphenyl)aniline) 
(K145) 5,10,15-trihexyl-N3,N3,N8,N8,N13,N13-hexakis(4-methoxyphenyl)-10,15-dihydro-5H-
diindolo[3,2-a:3′,2′-c]carbazole-3,8,13-triamine  
 
From Chen et al., H. J. Am. Chem. Soc. 2016, 138, 2528−2531. 
(TruxOMeTAD) 3,8,13-tri(di-4-methoxylphenylamino)-5,5,10,10,15,15-Hex(1-hexyl)10,15-
dihydro-5H-diindeno[1,2-α;1’,2’-c]fluorene 
 
From Su et al., J. Mater. Chem. A. 2017, 5, 1913-1918. 
(SP11) 2,7,12-tris(N,N-bis(4-methoxyphenyl)aniline)-5,10,15-triethyltriindole  
(SP12) 2,7,12-tris(4-methoxyphenyl)-5,10,15-triethyltriindole 
 
From Nazeeruddin et al., RSC Adv. 2015, 5, 53426-53432. 
(HPDI) 5,10,15-Tris(4-(hexyloxy)phenyl)-10,15-dihydro-5H-diindolo[3,2-a:3’,2’-c]carbazole  
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S11a Digital images of TAT-tBuSty HTM films either cycled through 30 min at 80°C followed by 30 min in air or exposed to ambient air  
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S11b Analysis of the red, green and blue (RGB) components of the digital images of the 
spiro-OMeTAD (dashed lines) and TAT-tBuSty (solid lines) across the heating cycles of 

30 min at 80°C followed by 30 min in ambient air 
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S11c UV-visible spectra of (a) spiro-OMeTAD control - ambient air and temperature, 
(b) heat cycled spiro-OMeTAD, (c) TAT-tBuSty control - ambient air and temperature 
and (d) heat cycled TAT-tBuSty. Heat cycles were 30 min at 80°C followed by 30 min in 

ambient air 
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