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S1 — Synthesis

10,15-dihydro-5H-diindolo[3,2-a:3',2'-c]carbazole (2).

A mixture of oxindole (10 g, 75 mmol) and POCl3 (50 mL) was heated at 100 °C for 6h. The cooled
reaction mixture was slowly poured into crushed ice water so that a temperature of less than 10 °C
was maintained. This mixture was neutralized carefully with a saturated KOH solution added in
small quantities so that a temperature of less than 10 °C was maintained. After neutralization, the
precipitate was filtered to give the crude product as a brown solid. The crude solution in MeOH was
absorbed on silica-gel, dried, loaded and eluted through a thick silica-gel pad with a CH>Cl as a
mobile phase. After evaporation of the solvent at reduced pressure and recrystallization from
acetone, a white solid was obtained. (5.5 g, 65 %). 'H NMR (400 MHz, DMSO-d6) § 11.86 (s, 3H),
8.68 (d, J = 7.6 Hz, 3H), 7.73 (d, ] = 7.8 Hz, 3H), 7.41 — 7.32 (m, 6H). 1*C NMR (100 MHz,
DMSO-d6) & 141.0, 135.3, 123.6, 124.1, 120.9, 120.4, 111.8, 103.1. C24HisN3[M+H"] Exact Mass
=346.1341, MS (FTMS + p NSI) = 346.1341.

5,10,15-trihexyl-10,15-dihydro-5H-diindolo[3,2-a:3',2'-c]carbazole (3). To a solution of (1) (1 g,
2.90 mmol, 1 eq.) in DMF (20 mL), NaH (0.2 g, 10.2 mmol, 3.5 eq.) was added at room
temperature and stirred for half hour. Then 1-iodohexane (2.46 g, 11.6 mmol, 4 eq.) was added via a
syringe and the mixture was heated at 160 °C i.e. refluxed for 2h. The cooled mixture was poured
into water and extracted with CH>Cl,. The organic phase was dried over MgSOa. The product was
isolated off on a silica gel column with 20 % CH>Cl; in petroleum ether to give (3) as a pale yellow
solid (1.3 g, 75%). '"H NMR (400 MHz, Chloroform-d) § 8.21 (d, J = 8.0 Hz, 3H), 7.55 (d, ] = 8.1
Hz, 3H), 7.37 (t, ] = 7.6 Hz, 3H), 7.25 (t, J = 7.5 Hz, 3H), 4.92-4.76 (m, 6H), 1.90 (dt, J =15.4, 7.8
Hz, 6H), 1.23 — 1.11 (m, 18H), 0.79 (t, J = 6.9 Hz, 9H). '*C NMR (100 MHz, Chloroform-d) &
13.83, 20.44, 24.70, 29.05, 31.06, 43.70, 106.14, 109.32, 119.60, 118.84, 120.55, 126.60, 138.14,
139.19. C4Hs1N3[M+H'] Exact Mass = 598.4158, MS (FTMS + p NSI) = 598.4158.

3,8,13-tribromo-5,10,15-trihexyl-10,15-dihydro-5SH-diindolo[3,2-a:3',2'-c]carbazole (4).

To a solution of (3) (1 g, 1.66 mmol, 1 eq.) in 90 mL CHCI3, (915 mg, 5.15 mmol, 3.1 eq.) of NBS
in 15 mL DMF was added dropwise via a syringe at 0 °C. After addition, the reaction mixture was
stirred for 1h at room temperature. The mixture was extracted with CH>Cl, and the organic phase
was dried over MgSQO4. The product was isolated on a silica gel column with 10 % CH2CL in
petroleum-ether to give a product as a white solid (1.35 g, 82%). 'H NMR (400 MHz, Chloroform-
d) 6 8.03 (s, 3H), 7.71 (s, 3H), 7.33 (d, J = 7.1 Hz, 3H), 4.65 — 4.59 (m, 6H), 1.83 — 1.62 (m, 6H),
1.35 — 1.14 (m, 18H), 0.72 (m, 9H). '3C NMR (400 MHz, Chloroform-d) & 127.3, 123.4, 122.2,




123.0, 121.1, 120.6, 112.1, 111.0, 52.6, 45.3, 30.7, 28.3, 25.7, 21.6, 12.1. C42H4sBrsN3;[M+H] Exact
Mass = 832.1486, MS (+ive ESI-QTOF) = 832.1486.
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S1b NMR spectrum of (3)
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S1c NMR spectrum of (4)
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S2 Full 'H NMR Spectrum for TAT-‘BuSty with peak picking and integration analysis
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S2.1 Theoretical estimation of 'H NMR peaks
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S2.2 Expansion of aromatic resonance region of "H NMR spectrum of TAT-‘BuSty with peak picking and integration analysis
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S2.3 Expansion of methylene and methyl resonance region of 'H NMR spectrum of TAT-‘BuSty with peak picking and integration
analysis
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S2.5 Theoretical estimation of 3C NMR Spectrum for TAT-‘BuSty
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S3 High Resolution Mass Spectrometry of TAT-'‘BuSty analysed using positive electrospray
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S3.1 Observed data & theoretical isotope pattern from positive electrospray high resolution mass spectrometry of TAT-‘BuSty
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S4 - Route 1 Cost Analysis Table for TAT-"BuSty

* = trans-di(m-acetato)bis[ O-(di-o-tolylphosphino)benzyl]diPd(II)

Solvent
Chemical Reagent Vol. Reagent Solvent Reagent + Product
mass (g) (ml) cost ($/g) | cost ($/ml) | solvent cost ($) | cost ($/g)
Oxindole 10 2.29 22.9
POCl; 150 0.13 19.7
NaOH 250 0.013 33
Anhydrous MgSO4 10 0.066 0.7
Silica 200 0.13 26.2
Methanol 500 0.013 6.6
CHxCl 5500 0.013 72.1
Total 620 6000 151.5
Product step 1 (Yield = 65%, 5.5g) 275
Sodium Hydride 0.2 2.18 0.43
Anhydrous DMF 2 0.08 0.16
Iodohexane 2 0.4 0.86
Anhydrous MgSO4 0.066 0.066
Silica 20 0.13 2.62
Petroleum-Ether 500 0.013 6.55
Dichloromethane 100 0.013 1.31
Total 23.2 652 2.80 0.1
Product step 2 (Yield = 75%, 1.3g) 9.2
N-Bromosuccinimide 1 0.09 0.09
Anhydrous CHCIl3 90 0.066 59
Anhydrous DMF 15 0.08 0.12
Anhydrous MgSO4 1 0.066 0.066
Silica 20 0.13 2.62
Petroleum-Ether 500 0.013 6.55
Dichloromethane 125 0.013 1.64
Total 22 730 17
Product step 3 (Yield = 82%, 1.35g) 12.6
Tertiary butoxystyrene 0.68 1.3 0.89
éﬁ};é(g?\}l(sém)z 10 0.08 0.8
Anhydrous Na,COs 0.25 0.066 0.013
Pd cat* 0.045 101 4.55
Magnesium MgSO4 0.5 0.066 0.04
Silica 20 0.13 2.62
Dichloromethane 125 0.013 1.64
Petroleum ether 500 0.013 6.55
Total 21.48 635 171
Product step 4 (Yield = 95%, 0.83g) 20.6
3"(())lt'al solvent mass & 686.68 3017
Product Cost 69.9
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S4.1 - Route 1 Cost Analysis Table for SP12
* [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II)

. Reagent Solvent |Reagent Solvent Reagent +  Product

Chemical Name mass (g) Vol. (ml) |cost ($/g) cost solvent cost cost
($/ml) (&) (8/2)

Oxindole 10 2.29 22.9
POCI; 150 0.13 19.7
NaOH 250 0.013 33
Anhydrous MgSO4 10 0.066 0.7
Silica 200 0.13 26.2
Methanol 500 0.013 6.6
Dichloromethane 5500 0.013 72.1
Total 620 6000 151.5
Product step 1 (Yield = 65%, 5.5g) 27.5
Sodium Hydride 0.2 2.18 0.43
Anhydrous DMF 2 0.08 0.16
[odoethane 2 0.4 0.86
Anhydrous MgSO4 1 0.066 0.066
Silica 20 0.13 2.62
Petroleum-Ether 500 0.013 6.55
Dichloromethane 100 0.013 1.31
Total 23.2 652 2.80 0.1
Product step 2 (Yield = 75%, 1.3g) 9.2
N-Bromosuccinimide 1 0.09 0.09
Anhydrous CHCl3 90 0.066 5.9
Anhydrous DMF 15 0.08 0.12
Anhydrous MgSO4 1 0.066 0.066
Silica 20 0.13 2.62
Petroleum ether 500 0.013 6.55
CH:Cl» 125 0.013 1.64
Total 22 730 17
Product step 3 (Yield = 82%, 1.35g) 12.6
[jAaérie(limethoxybenzene Boronic 061 13.1 3
Anhydrous Toluene 10 0.026 0.26
Anhydrous Methanol 5 0.026 0.13
Pd catalyst* 0.072 22.3 1.6
Anhydrous MgSO4 0.5 0.066 0.04
Silica 20 0.13 2.62
CH:CL 300 0.013 3.9
Petroleum ether 900 0.013 11.8
Total 21.18 1215 28.35
Product step 4 (Yield = 86%, 0.64g) 44.3
Total mass & solvent volume 686.382 8597
Product Cost 93.6




S4.2 - Synthesis of TAT-‘BuSty via route 2

O o)
Br Sodium Br Hydrazine Bp.
hydride hydrate
o —>» o —>» O
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H N\ Acid N\
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S4.3 Route 2 Cost Analysis Table for TAT-‘BuSty

* Trans-di(m-acetato)bis[ O-(di-o-tolylphosphino)benzyl]dipalladium(II)

Solvent

Chomcaams | Rt | TV | S | S| et | e
5-Bromoisatin 10 0.77 7.7

Sodium Hydride 1.06 2.17 2.31

Anhydrous DMF 200 0.08 15.7

Iodohexane 46.9 0.43 20.3

Petroleum ether 250 0.013 33

Total 57.96 450 49.3

Product step 1 (Yield = 90%, 12.3g) 4
Hydrazine Hydrate 39 0.09 3.68

HClag) 10 0.013 0.13 0.13

Total 49 3.81

Product step 2 (Yield = 64%. 2.73g) 1.4
POCl; 50 0.13 6.55

NaOH 250 0.013 3.28

Anhydrous MgSO4 10 0.066 0.66

Silica 200 0.13 26.2

Methanol 500 0.013 6.55

CHCl, 5500 0.013 72.05

Total 510 6000 115.3

Product step 3 (Yield = 65%, 5.5g) 21
Tertiary butoxystyrene 0.68 1.3 0.9
g?rlrllz]?lf;ﬁlscetamide 10 0.08 0.8

Anhydrous Na,CO3 0.25 0.066 0.013

Pd catalyst * 0.045 101 4.55

Anhydrous MgSO4 0.5 0.066 0.04

Silica 20 0.13 2.62

CH,Cl» 125 0.013 1.64

Petroleum ether 500 0.013 6.55

Total 21.475 635 17.1

Product step 4 (Yield = 95%, 0.83g) 20.6
Joual solvent mass & | 638435| 7085

Product Cost 47
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S4.4 Summary of the donor group cost (Sigma Aldrich®) and coupling reaction yields
for triazatruxene HTMs used to prepare perovskite devices with n > 18%

Donor group .
HTM Donor group molecular Donor gll) Y(l,eld
structure cost (£ g7) (%)
TAT-BuSty' \
Tert-butoxystyrene \—QO% 1 95
Dimethoxy N
Trux-OMeTADS! . 3 16 70
diphenylamine MeO O \©\°Me
H
Dimethoxy- N
ESI2 y
Ki3l diphenylamine Me0/©/ O\OMe 16 45
h "N
SP-1258 4-methoxy- s )o- 10 86
phenylboronic acid H 0/
References
i This work

ESIL Huang, C.; Fu, W.; Li, C-Z.; Zhang, Z.; Qiu, W.; Shi, M.; Heremans, P.; Jen, A. K-Y ;
Chen, H. J. Am. Chem. Soc. 2016, 138, 2528—-2531.

ESIZ Rakstys, K.; Abate, A.; Dar, M.L; Gao, P.; Jankauskas, V.; Jacopin, G.; Kamarauskas,
E.; Kazim, S.; Ahmad, S.; Gritzel, M.; Nazeeruddin, M.K. J. Am. Chem. Soc. 2015,
137,16172—-16178.

ESI3 Sy, P-Y.; Huang, L-B.; Liu, J-M.; Chen, Y-F.; Xiao, L-M.; Kuang, D-B.; Mayor,

M.;  Su, C.-Y.J. Mater. Chem. A. 2017, 5, 1913-1918.
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S5 Differential Scanning Calorimetry for the first (a) and second (b) heating cycles of
TAT-BuSty (solid line) and spiro-OMeTAD (dashed line).
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a
23 - (@)
246°C

29 4

XXX R R Y A

25 1
38°C

Heat flow (mW)

154°C

21 A
56°C
BRI

. M

30 50 70 90 110 130 150 170 190 210 230 250

17

Temperature (°C)

19.2 (b)
19.0
18.8
18.6

18.4

Heat flow (mW)

18.2

18.0

17.8

17.6

70 9 110 130 150 170 190 210 230 250

Temperature (°C)



S6 - Contact angle measurements of water on (a) TAT-"BuSty and (b) spiro-OMeTAD
thin films

83.7° ‘ (a) 70.1° (b)

‘ .

18



S7.1 - External calibration of electrochemistry using ferrocene (a) CV and (b) square wave voltammetry
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S7.2 - Electrochemistry of (3) showing (a) CV and (b) square wave voltammetry and of (5) showing (¢) CV and (d) square wave
voltammetry
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S7.3 Cyclic and square wave voltammograms of 3 and 5 (0.1mM) in dry DCM with
NBu4PFs (0.1M) as supporting electrolyte. Positive sweep at 0.1V.s™!

Cv SWVv
Sample
IP (V) EA (V) IP (V) EA (V)
3) 0.401 0: 65 mV ireversible 0.360 V -1.564V
(-5.2eV) (-5.2eV) (-3.2¢V)
) 0.322 0: 83 mV irreversible 0.284V -1.508 V
(-5.1eV) (-5.1eV) (-3.3¢eV)
25 [—®— Spiro-OMeTAD FB-SC —@— TAT-tBuSty FB-SC
—— Spiro-OMeTAD SC-FB —@®— TAT-tBuSty SC-FB
20
€
s FF
= 15 (%) | (mAcm2)| (V)
é‘ Spiro-OMeTAD | 20.3 22.3 1.15|0.80
2 (FB-SC)
% 10 Spiro-OMeTAD | 15.9 22.5 1.07 | 0.66
§ (SC-FB)
g TAT-tBuSty 20.3 22.1 1.15|0.80
O 5 (FB-SC)
TAT-tBuSty 14.2 22.3 1.07 | 0.59
0 (.SC'FBl) ! N \ | y y
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Voltage (V)

S8.1 Device performance using Spiro-OMeTAD and TAT-rBuSty as HTM layers. J-V
characteristics of optimized perovskite solar cells with FTO/SnOz/perovskite/HTM/Au device
structure, scanned from forward bias (FB) to short circuit (SC) and back again at a scan rate
of 0.38 V s7!. Corresponding device characteristics are given in the embedded table.
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S8.2 A comparison of the current-voltage parameters for TAT-‘BuSty with the next best
performing truxene and triazatruxenes reported to date. Data for spiro-OMeTAD
reported in side by side studies are also included.

HTM Scan n (OA)) Voc (V) Jsc (mA Cm-z) FF
R 203 1.15 22.1 0.80

K t
TAT-BuSty F 157  1.07 222 0.66
Trux-OMETADES! R 18.6 1.02 23.2 0.79
F 175 1.02 23.4 0.74
Spiro-OMETAD R 163  0.99 23.0 0.72
sp R 183 1.15 20.7 0.77
KR131 F 170 1.15 20.6 0.72
. R 179 1.09 223 0.74
Spiro-OMETAD F 163 1.06 223 0.69
s R 1838 1.08 228 0.77
SP-12 F 167 1.04 22.8 0.70
. R 169 1.02 21.6 0.77
Spiro-OMETAD F 150  0.98 215 0.71
HPDIES# R 108 098 19.2 0.58
Spiro-OMETAD R 129 094 19.6 0.69
TBDIFS R 149 1.09 18.7 0.73
F 149 1.09 18.7 0.73
PEDOT:PSS/polyTPD* -  15.3 1.08 18.5 0.76

+ =this work, * Poly(N,N'-bis-4-butylphenyl-N,N'-bisphenyl)benzidine, R and F stand for
reverse scan and forward scan, respectively.

ESI4. Ramos, F.J.; Rakstys, K.; Kazim, S.; Gritzel, M.; Nazeeruddin, M.K.; Ahmad, S. RSC
Adv. 2015, 5, 53426-53432.

ESI5. Calio, L.; Momblona, C.; Gil-Escrig, L.; Kazim, S.; Sessolo, M.; Sastre-Santos, A.;
Bolink, H. J.; Ahmad, S. Solar Energy Mater. Solar Cells. 2017, 163, 237-241.

22



S9 X-ray diffraction data for films of (a) spiro-OMeTAD and (b) TAT-BuSty on FTO
glass from Solaronix. The plain FTO substrate is shown in (c). These data confirm that
no crystalline peaks are observed for either of these HTM films on FTO
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S10 HTM abbreviations

From Nazeeruddin et al., J. Am. Chem. Soc. 2015, 137,16172—-16178.

(K122) 5,10,15-trihexyl-3,8,13-trimethoxy-10,15-dihydro-5H-diindolo[3,2-a:3",2"-
c]carbazole
(K131) 5,10,15-trihexyl-3,8,13-tris(4-methoxyphenyl)-10,15-dihydro-5H-diindolo[ 3,2-

a:3',2'-c]-carbazole

(K133)  4,4',4"-(5,10,15-trihexyl-10,15-dihydro-5Hdiindolo[3,2-a:3’,2'-c]carbazole-3,8,13-
triyl)tris(N,N-bis(4-methoxyphenyl)aniline)

(K145) 5,10,15-trihexyl-N°, N3, N¥ N® N'3, N'3-hexakis(4-methoxyphenyl)-10,15-dihydro-5H-
diindolo[3,2-a:3',2'-c]carbazole-3,8,13-triamine

From Chen et al., H. J. Am. Chem. Soc. 2016, 138, 2528—2531.
(TruxOMeTAD) 3,8,13-tri(di-4-methoxylphenylamino)-5,5,10,10,15,15-Hex(1-hexyl)10,15-
dihydro-5H-diindeno[1,2-a;1’,2’-c]fluorene

From Su et al., J. Mater. Chem. A. 2017, 5, 1913-1918.
(SP11) 2,7,12-tris(N, N-bis(4-methoxyphenyl)aniline)-5,10,15-triethyltriindole
(SP12) 2,7,12-tris(4-methoxyphenyl)-5,10,15-triethyltriindole

From Nazeeruddin et al., RSC Adv. 2015, 5, 53426-53432.
(HPDI) 5,10,15-Tris(4-(hexyloxy)phenyl)-10,15-dihydro-5H-diindolo[3,2-a:3",2’-c]carbazole
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S11a Digital images of TAT-‘BuSty HTM films either cycled through 30 min at 80°C followed by 30 min in air or exposed to ambient air

Pristine HTM films (as made) HTM films (after 7 thermal cycles)
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S11b Analysis of the red, green and blue (RGB) components of the digital images of the
spiro-OMeTAD (dashed lines) and TAT-'BuSty (solid lines) across the heating cycles of
30 min at 80°C followed by 30 min in ambient air
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S11c UV-visible spectra of (a) spiro-OMeTAD control - ambient air and temperature,
(b) heat cycled spiro-OMeTAD, (c) TAT-‘BuSty control - ambient air and temperature
and (d) heat cycled TAT-‘BuSty. Heat cycles were 30 min at 80°C followed by 30 min in

ambient air
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