S1

Supporting Information

Polyurethane Derivatives for Highly Sensitive and Selective Fluorescent

Detection of 2,4,6-Trinitrophenol (TNP)

Nan Jiang,^{‡a} Guangfu Li,^{‡a} Weilong Che,^a Dongxia Zhu,^{*a} Zhongmin Su^{*a} and Martin R. Bryce^{*b}

^{*a*} Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, P. R. China

^b Department of Chemistry, Durham University, Durham, DH1 3LE, UK E-mail: m.r.bryce@durham.ac.uk

Table of Contents:	Page
1. Experimental details	S2
2. Structural characterization of PUs	S5
3. Photophysical properties and interactions of PUs with nitro-aromatic analytes	S 7

1. Experimental details

General

Materials obtained from commercial suppliers were used without further purification unless otherwise stated. All glassware, syringes, magnetic stirring bars, and needles were thoroughly dried in a convection oven. ¹H NMR spectra were recorded at 25 °C on a Varian 500 MHz spectrometer and were referenced internally to the residual proton resonance in DMSO- d_6 (δ 2.5 ppm). The molecular weights of the polymers were calculated from their ¹H NMR spectra. UV-vis absorption spectra were recorded on a Shimadzu UV-3100 spectrophotometer. Photoluminescence spectra were collected on an Edinburgh FLS920 spectrophotometer.

Synthesis of PU Derivatives

PU1. A mixture of 2,5-dihydroxyterephthalic acid (2.62 mmol), polyethylene glycol mono-methyl ether ($M_w = 200 \text{ g mol}^{-1}$; 1.98 mmol), anhydrous THF (8 mL), hexamethylene diisocyanate (3.61 mmol) and DABCO (0.105 mmol) were added to dried two-neck round-bottom flask. The solution was heated at 75°C for 8 h under nitrogen atmosphere. After the clear solution became significantly viscous, product precipitated from excess diethyl ether. Then the product was dried under vacuum for 24 h to obtain the resulting **PU1** Yield: 84.6%. ¹H NMR (500 MHz, DMSO- d_6 , δ [ppm]): 12.41 (s, 2H), 7.01-7.95 (broad, 2H), 4.02 (s, 4H), 3.36-3.69 (broad, PEG protons), 3.23 (s, 6H; PEG terminal -OCH₃ protons), 2.63-2.98 (broad, 4H), 1.45 (broad, 4H), 1.29 (broad, 4H). FTIR: 3323 cm⁻¹(N-H), 2859 and 2941cm⁻¹(-CH₂-asymmetric and symmetric stretch), 1704 (C=O), 1193 cm⁻¹ (C-O-C stretch PEG). The molecular weight is 716 g mol⁻¹ calculated from the ¹H NMR spectra.

PU2. The synthetic procedure for **PU2** was the same as **PU1**, except monomer hydroquinone (2.62 mmol) was used instead of 2,5-dihydroxyterephthalic acid. Yield: 83%. ¹H NMR (500 MHz, DMSO- d_6 , δ [ppm]): 7.04-7.21 (broad, 4H ;), 4.03 (s, 4H), 3.39-3.61 (broad, PEG protons), 3.23 (s, 6H; PEG terminal -OCH₃ protons), 2.98 (broad, 4H), 1.41 (broad, 4H), 1.26 (broad, 4H). FTIR: 3326 cm⁻¹(N-H), 2859 and 2942 cm⁻¹ (-CH₂- asymmetric and symmetric stretching), 1705 cm⁻¹ (C=O), 1193 cm⁻¹ (C-O-C stretching PEG). The molecular weight is 1077 g mol⁻¹ calculated from the ¹H NMR spectra.

PU3. The synthetic procedure of **PU3** was the same as **PU1**, except monomer 2, 7-dihydroxynaphthalene (2.62 mmol) was used instead of 2,5-dihydroxyterephthalic acid.

Yield: 80.5%. ¹H NMR (500 MHz, DMSO- d_6 , δ [ppm]): 7.04-7.95 (broad, 6H), 4.04 (broad, 4H), 3.45-3.62 (broad, PEG protons), 3.23 (s, 6H; PEG terminal -OCH₃- protons), 3.01 (s, 4H), 1.43 (s, 4H), 1.31 (s, 4H). FTIR: 3322 cm⁻¹ (N-H), 2858 and 2940 cm⁻¹ (-CH₂- asymmetric and symmetric stretching), 1704 cm⁻¹ (C=O), 1191 cm⁻¹ (C-O-C stretching PEG). The molecular weight is 3112 g mol⁻¹ calculated from the ¹H NMR spectra.

Procedure for the sensing studies in the solution

Stock solutions of nitro-aromatic compounds, namely, picric acid (TNP), nitrobenzene (NB), 2,4-dinitrophenol (2,4-DNP) p-nitrophenol (NP), trinitrotoluene (TNT), 4-nitrotoluene (NT), 2,4-dinitrotoluene (2,4-DNT) and 2,6-dinitrotoluene (2,6-DNT) were prepared in acetonitrile-water mixture (1:1 v/v) at concentrations of 1×10^{-3} M, respectively. The absorption and fluorescence measurements of PUs (1×10^{-5} M) were carried out by sequentially adding different nitro-aromatic compounds in a quartz cuvette ($3 \text{ cm} \times 3 \text{ cm}$). The absorption and fluorescence spectra of the resultant mixtures were then recorded after mixing thoroughly at room temperature.

Fluorescence quenching (%) measurement

The quenching percentage was calculated using the equation as follows:

Fluorescence quenching $\% = (1 - I/I_0) \times 100\%$

where I_0 is the initial fluorescence intensity in the absence of analyte, I is the fluorescence intensity in the presence of corresponding analyte.

Fluorescence quenching titration study

The Stern–Volmer relationship establishes the correlation of intensity changes with the quencher concentration [Q] as follows:

$$I_0/I = 1 + KSV[Q]$$

where I_0 and I are the intensity, in the absence and presence of TNP, respectively, *KSV* is the Stern-Volmer quenching constant and [Q] is the concentration of TNP.

Benesi-Hildebrand equation

 $1/(F_0 - F_i) = 1/\{Ka * (F_0 - F_{Min}) * [PA]\} + 1/(F_0 - F_{Min})$

where, F_0 is the fluorescence intensity of sensor, F_i is the fluorescence intensity obtained with TNP at different concentration, F_{Min} is the fluorescence intensity obtained with excess amount of TNP.

Lifetime measurements

 $F(t) = \sum \alpha_i \exp\left(t \, / \, \tau_i\right)$

Where, α_i is a pre-exponential factor representing the fractional contribution to the time resolved decay of the component with a lifetime τ_i .

Method for detection limit calculation

The detection limit (LOD) was then calculated using the equation $3\sigma/K$, where σ is the standard deviation (SD) for PUs solution intensity in the absence of TNP and K denotes the slope of the curve.

2. Structural characterization of PUs

Fig. S1 ¹H NMR spectrum of **PU1** in DMSO- d_6 (* indicates peaks from the solvent and water)

Fig. S2 ¹H NMR spectrum of **PU2** in DMSO- d_6 (* indicates peaks from the solvent and water)

Fig. S3 ¹H NMR spectrum of **PU3** in DMSO- d_6 (* indicates peaks from the solvent and water).

Fig. S4 FTIR spectra of PU1, PU2 and PU3.

3. Photophysical properties and interactions of PUs with nitro-aromatic analytes

Fig. S5 (a) PL spectra of PU2 (10 μ M) in acetonitrile–water (v/v = 1:1) solution containing different amounts of TNP. (b) Corresponding Stern–Volmer plot of TNP.

Fig. S6 (a) PL spectra of **PU3** (10 μ M) in acetonitrile–water (v/v = 1:1) solution containing different amounts of TNP. (b) Corresponding Stern – Volmer plot of TNP.

Fig. S7 (a) Quenching efficiency of **PU2** (10 μ M) with analytes (30 μ M) in acetonitrile-water (v/v = 1:1) solution before (black) and after (red) the addition of TNP (30 μ M). (b) Quenching efficiency of **PU3** (10 μ M) with analytes (30 μ M) in acetonitrile-water (v/v = 1:1) solution before (black) and after (red) the addition of TNP (30 μ M).

Fig. S8 (a) Normalized absorption spectrum of TNP and excitation/emission spectra of PU2.(b) Overlap between emission spectra of PU2 and absorption spectra of various nitro-aromatics.

Fig. S9 (a) Normalized absorption spectrum of TNP and excitation/emission spectra of PU3.(b) Overlap between emission spectra of PU3 and absorption spectra of various nitro-aromatics.

Fig. S10 UV-visible spectra of PU2 (a) and PU3 (b) $(1 \times 10^{-5} \text{ M})$ with increasing concentration of TNP.

Fig. S11 ¹H NMR spectra of PU1 before and after addition of 1 equivalent of TNP in DMSO- d_6 .

Fig. S12 ¹H NMR spectra of **PU1** before and after addition of 1 equivalent of 2,4-DNT in DMSO- d_6 .

Fig. S13 ¹H NMR spectra of **PU2** before and after addition of 1 equivalent of 2,4-DNT in DMSO- d_6 .

Fig. S14 ¹H NMR spectra of PU3 before and after addition of 1 equivalent of 2,4-DNT in DMSO- d_6 .

Fig. S15 Comparison of the fluorescence quenching of PUs caused by the addition of various nitrophenols (TNP, 2,4-DNP and 4-NP) (30 μ M) in acetonitrile–water (v/v = 1:1) solution.

Fig. S16 Overlap between emission spectra of PUs and absorption spectra of various nitro-aromatics.

Fig. S17 (A) Luminescent photographs of PU2-coated filter paper with addition of different concentrations of TNP (10 μ L) water solutions. (B) Luminescent photographs of PU3-coated filter paper with addition of different concentrations of TNP (10 μ L) water solutions. All photographs were taken under 365 nm UV illumination.