Supporting Information

A Pure Red Luminescent β-Carboline-Substituented Biphenylmethyl

Radical: Photophysics, Stability and OLEDs

Alim Abdurahman, Yingxin Chen, Xin Ai, Ablikim Obolda, Yu Gao, Shengzhi Dong, Bao Li, Bing Yang, Ming Zhang and Feng Li*

Contents

S1. Experimental section
S2. MALDI-TOF mas spectra and FT-IR spectra of PyID-BTM
Fig. S1 and S2
S3. Crystallographic data of PyID-BTM
Table S1
S4. Selected angles in the crystal of PyID-BTM
Table S2
S5. Therma and Electrochemical properties
Fig. S3, S4 and S5.
S6. Spin density distribution calculated using DFT
Fig. S6.
S7. Measurements and calculations of molar extinction coefficients (ϵ)
Fig. S7 and S8
S8. Solvation Effect of PyID-BTM
Table S3
S9. Current efficiency (CE) and Power efficiency (PE) versus current density curves.

Fig. S9

S10. EL spectra of PyID-BTM-based OLEDs with different doping concentration at
different voltages
Fig. S10
S11. EPR spectra of PyID-BTM before and after evaporation
Fig. S11
S11. Data of DFT and TD-DFT calculations

S1. Experimental Section

General: All reagents and solvents were purchased from commercial sources and used as received unless otherwise stated. Chromatographic separations were carried out using silica gel (200-300 mesh). The ¹H nuclear magnetic resonance (NMR) spectra were obtained in deuterated dimethyl sulfoxide (DMSO) with a Bruker Avance-III 500 NMR spectrometer at ambient temperature. Fourier transform infrared spectroscopy (FTIR) spectra of radicals were recorded with Brucker VERTEX 80V. MALDI-TOF mass spectra were recorded on a Brucker Autoflex speed TOF/TOF mass spectrometer with DCTB as a matrix. EPR spectra were recorded on a Bruker ELEXSYS-II E500 CW-EPR spectrometer at ambient temperature. Thermal gravimetric analysis (TGA) was carried out on the Pyris1 TGA thermal analysis system at a heating rate of 20 °C min⁻¹ in a nitrogen atmosphere. Ultraviolet-visible (UV-Vis) absorption spectra were recorded on a shimadzu UV-2550 spectrophotometer. Fluorescence spectra were performed using a RF-5301 PC spectrophotometer. The CV measurements were performed using an electrochemical analyzer (CHI660C, CH Instruments, USA). A glass carbon disk was used as the working electrode. A platinum wire acted as the counter electrode and Ag/Ag+ acted as the reference electrode together with the redox couple ferrocenium/ferrocene as the internal standard at the rate of 50 or 100 mV \cdot s⁻¹. Tetrabutylammonium hexafluorophosphate (TBAPF₆) in anhydrous dichloromethane (0.1 M) were used as the supporting electrolyte for negative and positive scan respectively. (The measured electrochemical data of CzBTM was slightly different form that reported previously. This may be duo to the fact that the electrode used is different from thouse used before). An Edinburgh fluorescence spectrometer (FLS980) was used for the fluorescence decay and absolute fluorescence measurements. The lifetime of the excited states was measured by the time-correlated single photon counting method (detected at the peak of the PL) under the excitation of a laser (375 nm) with a pulse width of 50 ps.

Magnetic measurements were performed on a Quantum Design 6.5 Tesla SQUID-VSM system with a temperature range of 2-300 K and an applied field of 1000 Oe. After correction of diamagnetic contributions from the sample, using tabulated constants, sample holder, and paramagnetic contamination, the magnetic data were fitted with Curie-Weiss law. " $\chi_m = C/(T-\theta)$ " where *C* is Curie constant and θ is Weiss temperature.

Photostability of radicals was tested under irradiation with a 355 nm pulse laser (power density: 195.4 kW/cm², pulse width: 8 ns, frequence: 10 Hz).

The single crystals suitable for X-ray structural analysis were obtained by slow evaporation from the chloroform/ethanol solution at room temperature. Single crystal X-ray diffraction data were collected on a Rigaku RAXIS-PRID diffractometer using the ω -scan mode with graphite-monochromator Mo K α radiation (1 = 0.71073 Å). The structure was solved with direct methods using the SHELXTL programs and refined with full-matrix least squares on F². The corresponding CCDC reference number (CCDC: 1831917) for PyID-BTM. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. OLED Fabrication and Measurements: The OLEDs were fabricated through vacuum deposition of the materials at $\approx 3-4 \times 10^{-6}$ mbar onto ITO-coated glass substrates having a sheet resistance of $\approx 30 \ \Omega^{-2}$. Ready-made indium tin oxide (ITO) glass substrates were purchased and cleaned with ethanol, acetone, toluene and isopropyl alcohol. After dried with N₂, they were treated with UV irradiation for 15 min. The MoO₃ layer was deposited at a rate of 0.2 Å s⁻¹. All the organic layers were deposited at 0.4–0.6 Å s⁻¹. The evaporation rate of cathode LiF and Al metal layer were 0.1 Å s⁻¹ and 0.6–1.2 Å s⁻¹ respectively. The EL spectra, CIE coordinates, and The current density-voltage-luminance (J-V-L) characteristics of the devices were measured with a PHOTO RESEARCH SpectraScan PR 655 photometer and a KEITHLEY 2400 SourceMeter constant current source at room temperature.

Lippert-Mataga calculation: To further understand the effect of solvent polarity on the excited state of PyID-BTM, we used the Lippert-Mataga equation, a model that describes the interactions between the solvent and the dipole moment of solute:

$$hc(v_a-v_f) = hc(v_a^0-v_f^0) - \frac{2(\mu_e-\mu_g)^2}{a^3}f(\varepsilon,n)$$

where *f* is the orientational polarizability of the solvent, $(v_a^0 - v_f^0)$ corresponds to the Stokes shifts when *f* is zero, μ_e is the excited state dipole moment, μ_g is the ground-state dipole moment; a is the solvent cavity (Onsager) radius (5.98 Å), derived from the Avogadro number (N), molecular weight (M), and density (d=1.0 g/cm³); ε and n are the solvent dielectric and the solvent refractive index, respectively; *f*(ε ,n) and a can be calculated respectively as follows:

$$f(\varepsilon - n) = rac{\varepsilon - 1}{2\varepsilon + 1} - rac{n^2 - 1}{2n^2 + 1}$$
, $a = (rac{3M}{4N\pi d})^{1/3}$

The detailed data are listed in Table S1. In low-polarity solvents (slope value ~ 1321, R= 0.52), the corresponding μe was estimated to be 5.3 D. In high-polarity solvents (slope value ~ 5295, R= 0.96), the corresponding μe was estimated to be 10.6 D.

M1 was prepared according to the literature.¹

¹H NMR (500 MHz, DMSO) δ 10.63 (s, 1H), 7.35 (d, J = 7.7 Hz, 1H), 7.26 (d, J = 8.0 Hz, 1H), 6.99 (t, J = 7.4 Hz, 1H), 6.93 (t, J = 7.3 Hz, 1H), 3.86 (s, 2H), 3.31 (s, 1H), 2.98 (t, J = 5.6 Hz, 2H), 2.59 (t, J = 5.5 Hz, 2H). HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₁₁H₄N₂: 172.1; found:171.89.

PyID was prepared according to the literature.¹

¹H NMR (500 MHz, DMSO) δ 11.60 (s, 1H), 8.90 (s, 1H), 8.34 (d, J = 5.2 Hz, 1H), 8.24 (d, J = 7.8 Hz, 1H), 8.11 (d, J = 5.2 Hz, 1H), 7.65 – 7.51 (m, 2H), 7.25 (t, J = 7.4 Hz, 1H). HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₁₁H₈N₂: 168.07; found:167.96

Synthesis of PyID-BTM: Under an argon atmosphere, PyID (0.8 g, 4.76g) in dimethyl sulfoxide (10 ml) solution was added dropwise, with string, a dispersed of sodium hydride (60% in oil, 0.17 g, 7.14 mmol) in anhydrous dimethyl sulfoxide (40 ml). The reaction mixture was stirred for 20 min at room temperature before adding HBTM-Br (1.72 g, 3.82 mmol). And then the mixture was stirred for 4 h under 60 °C. After cooling to room temperature, the mixture was added in saturated ammonium chloride solution (100 ml). The precipitate was collected by suction filtration and purified by column chromatography (ethyl acetate: petroleum ether = 1:8). Deep red solid PyID-BTM was obtained in 10% (0.21 g) yield. MALDI-TOF(M/S): Calcd for $C_{24}H_{11}C_{16}N_2$, 538.90; found, 538.90. Elem.Anal.Calcd for $C_{24}H_{11}C_{16}N_2$: C 55.70 , N 2.60 , H 2.24; found: C 55.55 , N 2.51 , H 2.20.

References

1 C. Portmann, C. Prestinari, T. Myers, J. Scharte, K. Gademann, *Chembiochem* **2009**, 10, 889.

S2. MALDI-TOF mas spectra and FT-IR spectra of PyID-BTM

Fig. S1 MALDI-TOF mass spectra of PyID-BTM.

Fig. S2 FT-IR spectra of PyID-BTM.

CCDC	1831917
Empirical formula	C24 H11 Cl6 N2
Formula weight	540.05
Temperature	273(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P 21/c
a, Å	16.6879(5)
b, Å	8.2499(2)
c, Å	17.2222(5)
alpha, deg	90
beta, deg	107.7570(10)
gamma, deg	90
Volume, Å3	2258.08(11)
Z	4
Calculated density, Mg/m ³	1.589
Absorption coefficient, mm ⁻¹	0.778
F(000)	1084
Crystal size, mm ³	0.0500x0.0300x0.0200
Theta range for data collection, deg	2.76 to 28.29
Limiting indices	-22<=h<=21,-10<=k<=10, -22<=l<=21
Reflections collected	25386
Independent reflections	5592 [R(int) = 0.0449]
Completeness to theta = 28.29°	99.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.985 and 0.972
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5592 / 0 / 289
Goodness-of-fit on F2	1.043
Final R indices [I>2sigma(I)]	R1 = 0.0516, $wR2 = 0.1296$
R indices (all data)	R1 = 0.1048, wR2 = 0.1669
Largest diff. peak and hole, e.A ⁻³	0.493 and -0.473

 Table S1 X-Ray Crystallographic Data of PyID-BTM

S3. Crystallographic data of PyID-BTM

S4. Selected angles in the crystal of PyID-BTM

Angles	$\Phi(PyID-BTM)$
N1C7C8	118.14°
N1C7C6	118.7°
C6C7C8	123.15°
Dihedal angle between N1C6C8 plain (β-	
carboline moieties)	42.6°
(2,4,6-trichloropheny including C7)	49.5°
(2,4,6-trichloropheny including C6)	49.6°

 Table S2 Selected angles in the crystal of PyID-BTM.

S5. Therma and Electrochemical properties

Fig. S3 TGA curve of PyID-BTM under nitrogen flow.

Fig. S4 Cyclic voltammograms of PyID-BTM and CzBTM in 0.1 M TBAPF₆-CH₂Cl₂ at a scan rate of 0.05 Vs⁻¹.

Fig. S5 Multi-cycle CV measurements (20 cycles) of PyID-BTM in 0.1 M TBAPF₆-CH₂Cl₂ at a scan rate of 0.1 Vs⁻¹.

S6. Spin density distribution calculated using DFT.

Fig. S6 Spin density distribution of (a) CzBTM and (b) PyID-BTM using DFT methods (UB3LYP/6-31G(d,p)) with isovalue at 0.0015.

S7. Measurements and calculations of molar extinction coefficients (ε)

Fig. S7 UV-spectrum of (a) PyID-BTM and (c) CzBTM in cyclohexane at different concentration.

Fig. S8 Absorbency-concentration fitting line of PyID-BTM and CzBTM.

S8. Solvation Effect of PyID-BTM

Solvent	Δf	v _a (nm)	v _b (nm)	v_{a} - v_{b} (cm ⁻¹)	FWHM (nm)	$\Phi_F(\%)$
Cyclohexane	0	548	664	3188	81	19.51
p-xylene	0.003	547	681	3597	99	4.23
Toluene	0.014	546	682	3652	101	4.05
butyl ether	0.096	544	678	3633	101	3.63
isoprophyl ether	0.145	547	684	3661	102	3.82
chloroform	0.149	543	677	3645	99	4.26
diethy ether	0.167	546	689	3801	107	2.86
Tetrahyrofuran	0.210	545	703	3973	123	0.62
dichloromethane	0.218	544	694	3973	112	2.60
Dimethyl formamide	0.276	544	711	4494	160	0.23
Acetonitrile	0.305	541	711	4420	139	0.3

 Table S3 Photophysical properties of PyID-BTM in different solvents.

S9. Current efficiency (CE) and Power efficiency (PE) versus current density curves.

Fig. S9 Current efficiency (CE) and Power efficiency (PE) versus current density curves.

concentration at different voltages

Fig. S10 EL spectra of PyID-BTM-based OLEDs with different doping concentration at Different voltages

S11. EPR spectra of PyID-BTM before and after evaporation

Fig. S11 EPR spectra of PyID-BTM powder measured at room temperature before and after

evaporation.

S12. Data of DFT and TD-DFT calculations

Cartesian coordinates of all the optimized geometries by DFT calculation

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.002721	-0. 072398	0.003823
2	6	0	-1.284546	-0.770775	0.093913
3	6	0	-1.644863	-1.830292	-0.778867
4	6	0	-2.271095	-0.430025	1.058671
5	6	0	-2.866231	-2.492748	-0.709559
6	6	0	-3.504774	-1.065331	1.139201
7	6	0	-3.792494	-2.097000	0.249920
8	1	0	-3.095068	-3.286594	-1.408653
9	1	0	-4.217303	-0.774423	1.900243
10	6	0	1.289059	-0.771506	-0.085584
11	6	0	2.274830	-0.436733	-1.053734
12	6	0	1.648739	-1.829439	0.789634
13	6	0	3.506405	-1.076467	-1.134671
14	6	0	2.867806	-2.496230	0.719783
15	6	0	3. 793190	-2.106236	-0.242934
16	1	0	4.217415	-0.791037	-1.899262
17	1	0	3.094930	-3.289797	1.419805
18	17	0	1.950800	0.761656	-2.290053
19	17	0	0.580703	-2.320804	2.093597
20	17	0	-0.574585	-2.330455	-2.077100
21	17	0	-1.945114	0.772164	2.291715
22	17	0	5.337419	-2.923138	-0.335825
23	17	0	-5.338367	-2.909604	0.342930
24	6	0	-0.880410	2.148956	-0.733063
25	6	0	0.873394	2.166022	0.718709
26	6	0	-1.888745	1.828725	-1.645944
27	6	0	-0.568134	3.501577	-0.477698
28	6	0	1.880945	1.835360	1.628190
29	6	0	0.547747	3.515333	0.445310
30	1	0	-2.132357	0.801916	-1.898596
31	6	0	-1.313006	4.488696	-1.124276
32	6	0	2.578708	2.880061	2.230697
33	1	0	2.115741	0.807240	1.870588
34	6	0	1.259226	4.547810	1.063290
35	6	0	-2.317037	4.068926	-1.993259
36	1	0	-1.118734	5.545106	-0.968495

PYID-BTM (UB3LYP/6-31G(d))

37	6	0	2.280534	4.223281	1.950515
38	1	0	3.368169	2.644756	2.937948
39	1	0	1.011812	5.584944	0.857914
40	1	0	-2.926934	4.801991	-2.516303
41	1	0	2.845039	5.011576	2.438236
42	7	0	0.000489	1.322483	-0.003647
43	7	0	-2.597505	2.780374	-2.258542

CzBTM (UB3LYP/6-31G(d))

Center	Atomic	Atomic	Coore	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.000037	-0. 069737	-0.000077
2	6	0	-1.285358	-0.771511	0.092015
3	6	0	-1.645172	-1.832971	-0.778698
4	6	0	-2.271100	-0.434724	1.059481
5	6	0	-2.863322	-2.501245	-0.705615
6	6	0	-3.502058	-1.075350	1.143683
7	6	0	-3.788359	-2.108751	0.256201
8	1	0	-3.090051	-3.297370	-1.402842
9	1	0	-4.212993	-0.787319	1.907353
10	6	0	1.285383	-0.771541	-0.092128
11	6	0	2.271350	-0.434618	-1.059335
12	6	0	1.644973	-1.833204	0.778434
13	6	0	3.502284	-1.075305	-1.143412
14	6	0	2.863081	-2.501555	0.705446
15	6	0	3. 788346	-2.108915	-0.256094
16	1	0	4.213386	-0.787161	-1.906885
17	1	0	3.089600	-3.297860	1.402537
18	17	0	1.948431	0.769220	-2.290591
19	17	0	0.577980	-2.328602	2.082441
20	17	0	-0.578533	-2.328118	-2.083084
21	17	0	-1.947832	0.768854	2.290893
22	17	0	5.332047	-2.927679	-0.353179
23	17	0	-5.332100	-2.927434	0.353424
24	6	0	-0.877819	2.157269	-0.730591
25	6	0	0.877864	2.157261	0.730528
26	6	0	-1.879070	1.814812	-1.641133
27	6	0	-0.557262	3.508073	-0.463820
28	6	0	1.879223	1.814748	1.640930
29	6	0	0.557164	3.508044	0.464013
30	1	0	-2.106937	0.783680	-1.877769

31	6	0	-1.272587	4.531034	-1.091719
32	6	0	2.582322	2.851032	2.254031
33	1	0	2.107210	0.783606	1.877330
34	6	0	1.272396	4.530965	1.092058
35	6	0	-2.290593	4.195895	-1.980775
36	1	0	-1.031601	5.571291	-0.893933
37	6	0	2.290497	4.195835	1.980999
38	1	0	3.368439	2.606447	2.961842
39	1	0	1.031253	5.571222	0.894432
40	1	0	-2.856704	4.979454	-2.474703
41	1	0	2.856546	4.979347	2.475040
42	7	0	0.000065	1.323148	-0.000110
43	6	0	-2.582252	2.851124	-2.254088
44	1	0	-3.368292	2.606555	-2.961990

Excited states calculated by TD-DFT calculations

PyID-BTM (UB3LYP/6-31G(d))

Excited State 1: 2.058-A 2.2587 eV 548.92 nm f=0.1113 <S**2>=0.809 135B ->136B 0.98685 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -3791.76162303 Copying the excited state density for this state as the 1-particle RhoCl density.

Excited State 2: 2.165-A 2.6204 eV 473.16 nm f=0.0199 <S**2>=0.922 135A ->137A 0.10657 136A ->137A 0.59831 129B ->136B -0.11358 132B ->136B -0.22771 0.70452 134B ->136B Excited State 3: 2.166-A 2.6479 eV 468.23 nm f=0.0335 <S**2>=0.923 135A ->137A -0.10228 136A ->137A -0.64970 129B ->136B 0.20735 132B ->136B 0.12449 134B ->136B 0.66944

Excited State 4: 2.343-A 2.9308 eV 423.04 nm f=0.0068 <S**2>=1.122

135A ->138A	-0.12850				
136A ->138A	0.95504				
135B ->138B	0.19097				
	0.110	0.0474	100.05	(0.0040	.0 0. 0.070
Excited State 5:	2.116-A	3.0474 eV	406.85 nm	t=0.0042	<\$**2>=0.870
135A ->139A	0.10352				
136A ->137A	-0.11154				
136A ->139A	0.82243				
130B ->136B	-0.34260				
131B ->136B	-0.26199				
132B ->136B	-0.26246				
133B ->136B	0.12017				
Excited State 6:	2.165-A	3.1313 eV	395.95 nm	f=0.0072	<s**2>=0.922</s**2>
136A ->139A	0.11944				
136A ->140A	0.62765				
130B ->136B	-0.41158				
131B ->136B	0.50462				
132B ->136B	0.23663				
133B ->136B	-0.19623				
Evolted State 7:	2 225 A	2 15/7 01/	202.01 pm	f-0.0762	< C+++2> =0 000
126A \127A	2.22J-A 0.27264	5.1547 EV	393.01 IIII	1-0.0703	<3^^2/=0.900
130A ->137A	-0.27204				
130A - > 139A	-0.17300				
130A - > 140A	0.12933				
130A ->141A	-0.17071				
120D ->130D	0.21922				
129D ->130D	-0.10111				
101D ->100D	0.33760				
132D ->130D	-0.39400				
122D ->120D	0.01122				
Excited State 8:	2.413-A	3.2020 eV	387.20 nm	f=0.0500	<s**2>=1.205</s**2>
129A ->137A	0.13425				
130A ->139A	0.10257				
132A ->137A	0.12829				
134A ->138A	-0.10278				
135A ->141A	-0.10892				
136A ->137A	0.18207				
136A ->140A	-0.21299				
136A ->141A	-0.35822				
136A ->143A	-0.14821				
128B ->136B	0.50542				
129B ->136B	0.10790				

129B ->137B	-0.11443
130B ->136B	-0.13257
130B ->139B	-0.11859
132B ->136B	0.46928
132B ->137B	-0.10710
133B ->136B	0.15450
134B ->138B	-0.10550

Excited State 9: 2.598-A 3.2707 eV 379.07 nm f=0.0088 <S**2>=1.437 134A ->138A -0.29760 135A ->144A 0.12636 136A ->139A -0.20777 136A ->140A 0.19455 136A ->141A 0.15868 136A ->144A -0.16098 128B ->136B -0.22752 129B ->136B -0.16915 130B ->136B -0.17253 131B ->136B -0.34082 132B ->136B 0.18902 133B ->136B 0.50508 134B ->136B 0.13489 134B ->138B -0.30683 135B ->143B -0.10496 3.2824 eV 377.72 nm f=0.0381 <S**2>=1.073 Excited State 10: 2.300-A 134A ->138A 0.16983

136A ->137A	0.12277
136A ->139A	0.31891
136A ->141A	0.13001
136A ->144A	0.10916
128B ->136B	-0.17982
129B ->136B	0.23640
130B ->136B	0.40262
131B ->136B	0.16409
132B ->136B	0.41698
133B ->136B	0.49601
134B ->138B	0.19457

Excited State 11: 2.500-A 3.2979 eV 375.94 nm f=0.0558 <S**2>=1.313 134A ->138A -0.27252 135A ->144A 0.10070 136A ->137A -0.18082 136A ->139A 0.30894

136A ->140A	-0.11985				
136A ->144A	-0.13334				
129B ->136B	-0.43705				
130B ->136B	0.47077				
131B ->136B	0.38846				
133B ->136B	-0.10380				
134B ->138B	-0.26998				
Excited State 12:	2.161-A	3.3460 eV	370.55 nm	f=0.0057	<s**2>=0.918</s**2>
136A ->140A	0.65462				
136A ->141A	-0.20574				
128B ->136B	0.21656				
130B ->136B	0.46002				
131B ->136B	-0.42629				
132B ->136B	-0.10645				
Excited State 13:	2.519-A	3.4606 eV	358.28 nm	f=0.0361	<s**2>=1.336</s**2>
134A ->138A	-0.36943				
129B ->136B	0.70680				
130B ->136B	0.14529				
131B ->136B	0.19234				
132B ->136B	-0.37918				
134B ->138B	-0.28056				
Excited State 14:	2.603-A	3.6864 eV	336.33 nm	f=0.1073	<s**2>=1.444</s**2>
135A ->138A	0.22476				
136A ->138A	0.11849				
136A ->140A	0.11183				
136A ->141A	0.69635				
136A ->145A	-0.14869				
128B ->136B	0.35446				
135B ->138B	-0.33681				
Excited State 15:	3.264-A	3.7781 eV	328.17 nm	f=0.0120	<s**2>=2.414</s**2>
128A ->137A	-0.12128				
130A ->139A	-0.25237				
130A ->140A	-0.16486				
131A ->139A	0.23068				
131A ->140A	-0.24896				
132A ->140A	-0.11717				
135A ->137A	0.35202				
136A ->137A	-0.15214				
136A ->142A	0.13720				
128B ->137B	0.16181				

129B ->136B	0.28641
130B ->139B	0.23213
130B ->140B	0.17211
131B ->139B	-0.22856
131B ->140B	0.23438
132B ->136B	0.19305
132B ->140B	0.10796
135B ->137B	-0.32915

Excited State 16: 3.047-A 3.8100 eV 325.42 nm f=0.0003 <S**2>=2.072 129A ->137A 0.11549 130A ->139A 0.20263 130A ->140A 0.15012 131A ->139A 0.11427 131A ->140A -0.15015 0.11632 132A ->137A 135A ->138A -0.30167 136A ->138A -0.16241 136A ->141A 0.41006 136A ->142A 0.10585 136A ->143A -0.16058 128B ->136B -0.15329 129B ->137B -0.10904 130B ->139B -0.20265 130B ->140B -0.14348 131B ->139B -0.10794 131B ->140B 0.15328 135B ->138B 0.52873 Excited State 17: 2.946-A 3.8375 eV 323.09 nm f=0.0074 <S**2>=1.920 130A ->139A -0.23047 130A ->140A -0.16444 131A ->139A -0.16207 131A ->140A 0.21096

132A ->139A	-0.10399
135A ->138A	-0.20607
136A ->138A	-0.12945
136A ->141A	0.20783
136A ->142A	0.16198
128B ->136B	0.51915
129B ->137B	0.13073
130B ->139B	0.20687
130B ->140B	0.14148
131B ->139B	0.13237

131B ->140B 132B ->137B 132B ->139B 135B ->138B	-0.19037 0.11099 0.10418 0.37038				
Excited State 18:	2.157-A	3.8467 eV	322.31 nm	f=0.0059	<s**2>=0.913</s**2>
136A ->142A	0.95237				
135B ->138B	-0.12607				
Excited State 19:	2.749-A	3.9669 eV	312.55 nm	f=0.0132	<s**2>=1.640</s**2>
133A ->138A	0.11395				
134A ->138A	-0.17903				
135A ->144A	-0.16330				
136A ->143A	-0.14024				
136A ->144A	0.75931				
129B ->136B	-0.12374				
129B ->138B	-0.10879				
133B ->138B	-0.12493				
134B ->138B	-0.38945				
135B ->143B	0.18108				
135B ->144B	0.12614				
Excited State 20:	2.286-A	4.0051 eV	309.56 nm	f=0.0191	<s**2>=1.056</s**2>
135A ->141A	-0.10015				
136A ->143A	0.89751				
136A ->144A	0.11885				
136A ->145A	-0.11633				
128B ->136B	0.12757				
135B ->138B	0.14422				

CzBTM (UB3LYP/6-31G(d))

Excited State 1: 2.054-A 2.1841 eV 567.66 nm f=0.0884 <S**2>=0.805 0.98732 134B ->136B This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -3775.72796568 Copying the excited state density for this state as the 1-particle RhoCl density. 2.2525 eV 550.44 nm f=0.0000 <S**2>=0.822 Excited State 2: 2.071-A 135B ->136B 0.98789 2.5933 eV 478.10 nm f=0.0459 <S**2>=0.948 Excited State 3: 2.189-A 134A ->137A 0.14669

136A ->137A	0.89734				
130B ->136B	0.26852				
133B ->136B	-0.16207				
Excited State 4:	2.101-A	2.9832 eV	415.61 nm	f=0.0015	<s**2>=0.854</s**2>
134A ->138A	0.11167				
136A ->138A	0.92344				
132B ->136B	-0.32141				
Excited State 5:	2.143-A	3.0405 eV	407.78 nm	f=0.0000	<s**2>=0.898</s**2>
136A ->139A	0.91110				
131B ->136B	-0.34298				
Excited State 6:	2.647-A	3.1103 eV	398.62 nm	f=0.0219	<s**2>=1.501</s**2>
134A ->144A	0.14277				
135A ->139A	-0.17378				
135A ->140A	0.26257				
136A ->137A	0.19986				
136A ->144A	-0.17897				
133B ->136B	0.74607				
134B ->144B	-0.15845				
135B ->136B	-0.11875				
135B ->139B	0.24022				
135B ->140B	-0.26009				
Excited State 7:	2.456-A	3.2077 eV	386.53 nm	f=0.0174	<s**2>=1.258</s**2>
130A ->137A	-0.21617				
131A ->139A	0.12243				
132A ->138A	0.13538				
133A ->137A	0.10581				
134A ->141A	0.13970				
130A ->139A	0.11707				
130A - > 141A	0.46339				
130A ->143A	-0.22438				
129D ->130D	0.19691				
130D ->137D	0.22716				
131D ->130D	0.33710				
101D ->109D	-0.11120				
132R ->138R	-0.14590				
Excited State 8:	2.364-A	3.2322 eV	383.59 nm	f=0.0027	<\$**2>=1.147
134A ->139A	0.12685				
136A ->139A	-0.23116				
136A ->140A	0.79280				

129B ->136B	0.15053				
131B ->136B	-0.42694				
134B ->139B	-0.14819				
134B ->140B	0.13510				
Excited State 9:	2.816-A	3.2399 eV	382.67 nm	f=0.0716	<s**2>=1.733</s**2>
134A ->137A	0.12109				
134A ->144A	0.10699				
135A ->139A	-0.23072				
135A ->140A	0.34293				
136A ->137A	-0.28865				
136A ->138A	-0.15064				
136A ->144A	-0.12932				
130B ->136B	0.44110				
132B ->136B	-0.31511				
133B ->136B	-0.32940				
134B ->144B	-0.12483				
135B ->139B	0.27565				
135B ->140B	-0.29377				
Excited State 10:	2.211-A	3.3156 eV	373.95 nm	f=0.0129	<s**2>=0.973</s**2>
135A ->139A	-0.10505				
135A ->140A	0.15097				
136A ->138A	0.30309				
130B ->136B	0.18454				
132B ->136B	0.85729				
133B ->136B	-0.21690				
135B ->140B	-0.10231				
Evolted State 11.	2 100 /	2 25/1 oV	260.65 pm	f=0.0040	~ \$++2> -0.040
	2.190-A	5.5541 EV	309.03 1111	1-0.0040	<3^^2/=0.949
136A >140A	0.23329				
136A > 140A	0.49700				
120P \126P	-0.21407				
129D ->130D	-0.10207				
134B ->139B	-0.10590				
Excited State 12:	2.466-A	3.3724 eV	367.64 nm	t=0.0601	<\$**2>=1.270
134A ->137A	0.14768				
135A ->139A	0.19156				
135A ->140A	-0.27042				
136A ->137A	-0.19760				
130B ->136B	0.70578				
133B ->136B	0.45666				

135B ->139B	-0.16160				
135B ->140B	0.16693				
Excited State 13:	2.427-A	3.6766 eV	337.23 nm	f=0.0692	<s**2>=1.222</s**2>
130A ->137A	0.12752				
132A ->138A	-0.10981				
133A ->144A	-0.10316				
136A ->140A	0.11110				
136A ->141A	0.79650				
136A ->143A	0.16766				
136A ->145A	0.13152				
129B ->136B	-0.32267				
131B ->139B	0.10274				
132B ->138B	0.12430				
Excited State 14:	3.132-A	3.7491 eV	330.71 nm	f=0.0163	<s**2>=2.202</s**2>
131A ->138A	-0.29335				
132A ->139A	-0.23860				
132A ->140A	-0.12681				
134A ->137A	-0.35155				
136A ->137A	0.11616				
136A ->142A	-0.31157				
129B ->137B	-0.14822				
130B ->136B	0.37062				
131B ->138B	0.27276				
132B ->139B	0.20430				
132B ->140B	0.15272				
133B ->136B	-0.11239				
134B ->137B	0.42153				
Excited State 15:	2.252-A	3.7625 eV	329.52 nm	f=0.0018	<s**2>=1.018</s**2>
134A ->137A	-0.16884				
136A ->142A	0.92959				
134B ->137B	0.13475				
Excited State 16:	3.044-A	3.8397 eV	322.90 nm	f=0.0131	<s**2>=2.066</s**2>
130A ->137A	0.17200				
130A ->138A	-0.13171				
131A ->139A	-0.31759				
131A ->140A	-0.16533				
132A ->138A	-0.35148				
136A ->145A	-0.10333				
129B ->136B	0.54649				
130B ->137B	-0.20330				

131B ->139B	0.25842				
131B ->140B	0.18987				
132B ->138B	0.32369				
133B ->137B	0.11045				
134B ->139B	-0.11554				
Excited State 17:	2.666-A	3.9067 eV	317.36 nm	f=0.0105	<s**2>=1.527</s**2>
129A ->140A	-0.10552				
133A ->144A	0.15633				
134A ->139A	0.13370				
134A ->140A	-0.15597				
134A ->141A	0.13439				
136A ->140A	-0.15509				
136A ->141A	0.14815				
136A ->143A	0.70734				
136A ->145A	-0.11518				
128B ->136B	-0.14821				
132B ->138B	-0.10784				
133B ->144B	-0.14286				
134B ->139B	-0.29648				
134B ->140B	0.22305				
134B ->141B	-0.12021				
135B ->146B	0.10144				
Excited State 18:	2.364-A	3.9699 eV	312.31 nm	f=0.0229	<\$**2>=1.147
134A ->140A	0.10508				
136A ->141A	-0.12410				
136A ->143A	0.50171				
128B ->136B	0.63496				
129B ->136B	0.26711				
134B ->139B	0.30262				
134B ->140B	-0.22844				
F 1 1 0 1 1 0	0.750	0.0000 \/	010.11		0 0 1 0 1 1
Excited State 19:	2.75U-A	3.9980 eV	310.11 nm	T=0.0066	<5**2>=1.641
134A ->144A	-0.18977				
136A ->144A	0.78281				
133B ->136B	0.12091				
133B ->139B	0.11049				
1338 ->1408	-0.11690				
1348 ->1448	0.26613				
132R ->138R	0.30040				
132R ->140R	-0.24942				

Excited State 20: 2.867-A 4.0049 eV 309.58 nm f=0.0003 <S**2>=1.805

134A ->139A	0.10012
134A ->140A	-0.12709
135A ->137A	0.85655
135A ->144A	-0.11008
136A ->140A	-0.11693
136A ->143A	-0.17630
128B ->136B	0.28837
134B ->139B	-0.20484
134B ->140B	0.15518