Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Structure-property relationship in multi-stimuli responsive D-A-A' benzothiazole

functionalized isomers.

Anupama Ekbote, Shaikh M. Mobin and Rajneesh Misra*

Department of Chemistry, Indian Institute of Technology Indore,

Indore- 453552, India

* Corresponding author - email: <u>rajneeshmisra@iiti.ac.in</u>

Table of contents

I.	Experimental section ······S1
II.	Thermogravimetric analysisS1
III.	TDFT data·····S2
IV.	Electrochemical properties ······S4
V.	SolvatochromismS5
VI.	Aggregation induced emission ······S6
VII.	Single crystal X-ray analysis Similar Single crystal X-ray analysis Similar Single crystal X-ray analysis Similar Simil
VIII.	Mechanochromism······S11
IX.	Crystallographic data·····S13
X.	DFT calculations S15
XI.	Copies of NMR and HRMS spectra of the new compounds······S33

Experimental section

Scheme S1. Synthetic route to BTD-TPE.

Thermogravimetric analysis:

Fig. S1 TGA curves of *p*-**BT**, *m*-**BT** and *o*-**BT** at a heating rate of 10° C min⁻¹ under a nitrogen atmosphere.

TDDFT data

Table S1 Computed vertical transitions,	their oscillator strengths	and configurations of <i>p</i> -BT,
<i>m</i> - BT and <i>o</i> - BT .		

Compound	Wavelength(nm)	f^{a}	Configuration	Assignment
p-BT	303	0.9296	HOMO-LUMO+2 (0.38378)	π-π*
	394.14	1.0583	HOMO-LUMO (0.56376)	ICT
m-BT	290.83	0.2711	HOMO-LUMO+2 (0.43098)	π - π^*
	379.17	0.7519	HOMO-LUMO (0.55230)	ICT
o-BT	311 279	0.2957 0.0349	HOMO-LUMO+2 (0.55045) HOMO-LUMO+2 (0.28821)	π-π*
	369.54	0.5984	HOMO-LUMO(0.55385)	ICT

^a Oscillator strength.

Fig. S2 Frontier molecular orbitals of *p*-**BT**, *m*-**BT** and *o*-**BT** at the CAMB3LYP/ 6-31G(d,p) level.

Electrochemical properties

Fig. S3 Cyclic voltammetry (CV) plots of (A) *p*-BT, (B) *m*-BT and (C) *o*-BT.

Solvatochromism

Fig. S4 Electronic absorption spectra of the isomers (A) *p*-**BT**, (B) *m*-**BT** and (C) *o*-**BT** (excitation wavelength or λ_{ex} =370 nm) in solvents of different polarities.

Aggregation induced emission

Fig. S5 Electronic absorption spectra of (A) p-BT, (B) m-BT and (C) o-BT in DMF-water mixtures (0% to 90% water), Luminogen concentration: 10 μ M; intensity calculated at λ max.

Fig. S6 Photograph of (A) p-BT (B) m-BT and (C) o-BT in THF–water mixtures with different water fractions (10 μ M) (0% water to 90% water from left to right) under 365 nm UV illumination.

Single crystal X-ray analysis

Fig. S7 Unit cell diagrams for the crystal of (A) *p*-BT 1, (B) *p*-BT 2 and (C) *o*-BT.

Fig. S8 Crystal packing diagram of *p*-BT 1 (A) side view and (B) top view.

Fig. S9 Crystal packing diagram of *p*-BT 2 (A) side view and (B) top view.

Fig. S10 Crystal packing diagram of *o*-BT (A) top view and (B) side view.

Mechanochromism

Fig. S11 Repeated switching of the solid-state fluorescence of *p*-**BT** by repeated grinding and fuming cycles.

Fig. S12 PXRD patterns of pristine, grinded and fumed solids of (A) *p*-**BT 1** (B) *p*-**BT 2** (C) *m*-**BT** and (D) *o*-**BT**, (E) Fumed patterns of *p*-**BT 1** and *p*-**BT 2**.

Fig. S13 Schematic diagram for measurement of dihedral angles.

Crystallographic data

Single crystal X-ray structures of *p*-**BT** and *o*-**BT** were performed on a CCD Agilent Technologies (Oxford Diffraction) SUPER NOVA diffractometer. The strategy for the Data collection was evaluated by using the CrysAlisPro CCD software. The data were collected by the standard 'phi omega scan techniques, and were scaled and reduced using CrysAlisPro RED software. The structures were solved by direct methods using SHELXS-97, and refined by full matrix least-squares with SHELXL-97, refining on F2. The positions of all the atoms were obtained by direct methods. All non hydrogen atoms were refined anisotropically. The remaining hydrogen atoms were placed in geometrically constrained positions, and refined with isotropic temperature factors, generally 1.2Ueq of their parent atoms. The crystal and refinement data are summarized in Table S1. The CCDC number 1847593, 1863992 and 1847594 contains the supplementary crystallographic data for *p*-**BT 1**, *p*-**BT 2** and *o*-**BT**. These data can be obtained free of charge via <u>www.ccdc.cam.ac.uk</u> (or from the Cambridge Crystallographic Data Centre, 12 union Road, Cambridge CB21 EZ, UK; Fax: (+44) 1223-336-033; or <u>deposit@ccdc.cam.ac.uk</u>).

Table S2. Crystal data and structure refinement for *p*-BT and *o*-BT

Identification code	rm211	rm262	rm241
Empirical formula	C45 H29 N3 S2	C45 H29 N3 S2	C45 H29 N3 S2
Formula weight	675.83	675.83	675.83
Temperature	293(2) K	293(2) K	293(2) K
Wavelength	1.54184 A	0.71073 A	0.71073 A
Crystal system, space	Triclinic,	Triclinic,	Monoclinic,
group	P -1	P -1	P 21/n
a/(Å)	7.6932(3)	7.6440(8)	11.0588(10)
b/(Å)	9.9070(2)	9.8294(8)	8.5477(7)
c/(Å)	22.3507(6)	22.3403(19)	36.929(3)
Alpha/(°)	88.016(2)	87.824(7)	90
Beta/(°)	83.522(3)	83.835(8)	98.260(7)
Gamma/(°)	83.631(2)	83.258(7)	90
Volume	1681.75(9) Å ³	1656.8(3) Å ³	3454.6(5) Å ³
Z, Calculated density	2, 1.335 mg/m ⁻³	2, 1.355 mg/m ⁻³	4, 1.299 mg/m ⁻³
Absorption coefficient	1.727 mm ⁻¹	0.200 mm ⁻¹	0.192 mm ⁻¹
F(000)	704	704	1408
Crystal size	0.230 x 0.180 x 0.140 mm	0.230 x 0.180 x 0.130 mm	0.230 x 0.180 x 0.130 mm
Θ range for data collection/(°)	3.982 to 71.221	2.938 to 29.320	3.026 to 29.143
Reflections collected / unique	10875 / 6398 [R(int) = 0.0207]	20784 / 7817 [R(int) = 0.1927]	29511 / 8224 [R(int) = 0.1475]
Completeness to theta	$\Theta = 67.684$ 99.8 %	Θ = 25.242 99.8 %	Θ = 25.242 99.8 %
Absorption	Semi-empirical from	Semi-empirical from	Semi-empirical from

correction	equivalents	equivalents	equivalents
Max. and min. transmission	1.00000 and 0.42833	-	1.00000 and 0.52239
Refinement method	Full-matrix least- squares on F ²	Full-matrix least- squares on F ²	Full-matrix least- squares on F ²
Data / restraints / parameters	6398 / 0 / 451	7817 / 0 / 451	8224 / 0 / 451
$\begin{array}{c} \text{Goodness-of-fit on} \\ F^2 \end{array}$	1.043	0.944	1.041
Final R indices [I>2sigma(I)]	R1 = 0.0467, wR2 = 0.1336	R1 = 0.0985, w $R2 = 0.2157$	R1 = 0.0897, w $R2 = 0.2097$
R indices (all data)	R1 = 0.0483, wR2 = 0.1378	R1 = 0.2544, wR2 = 0.3547	R1 = 0.1470, wR2 = 0.2435
Extinction coefficient	n/a	n/a	n/a
Largest diff. peak and hole $(e.Å^{-3})$	0.229 and -0.393	0.607 and -0.737	0.332 and -0.407

DFT calculations:

DFT calculation data of *p*-BT, *m*-BT and *o*-BT

Calculation method: B3LYP/6-31G(d,p) with Gaussian 09.

p-BT:

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	туре	X	<u> </u>	Ľ
1	16	0	-1.554216	-1.095097	3.391089
2	16	0	-9.529337	1.375048	-1.422271
3	7	0	-2.783111	-0.780096	2.348953
4	7	0	-0.271917	-0.873219	2.390806
5	7	0	-9.486801	-0.697680	0.176165
6	6	0	-11.058751	0.667637	-0.946848
7	6	0	-12.356094	1.046222	-1.297525
8	1	0	-12.536326	1.890150	-1.955349
9	6	0	-13.417104	0.308624	-0.778264
10	1	0	-14.434466	0.585251	-1.037663
11	6	0	-13.190584	-0.785884	0.074434

Standard orientation:

12	1	0	-14.037099	-1.342688	0.464337
13	6	0	-11.900383	-1.162857	0.423763
14	1	0	-11.709291	-2.004764	1.080616
15	6	0	-10.816064	-0.433408	-0.087926
16	6	Õ	-8 696214	0 136068	-0 430335
17	6	0	-7 233667	0.190000	-0 332704
1 0	0	0	-7.233007	0.090500	-0.332704
18	0	0	-6.625216	-0.8/855/	0.4/8/31
19	l	0	-7.258530	-1.580403	1.0091/1
20	6	0	-5.244205	-0.944790	0.597412
21	1	0	-4.799963	-1.700765	1.232577
22	6	0	-4.412053	-0.046248	-0.097798
23	6	0	-5.027805	0.930729	-0.901664
24	1	0	-4.415354	1.661960	-1.419392
25	6	0	-6.409912	1.001596	-1.018535
26	1	0	-6.846978	1.775878	-1.642430
27	6	0	-2.937028	-0.124948	-0.028090
28	6	0	-2.142993	0.158334	-1.122879
29	1	0	-2.622076	0.403637	-2.065387
30	6	0	-0.724362	0.101181	-1.101075
31	1	Õ	-0 198917	0 304808	-2 028390
32	6	0	0.11246	-0 239390	0 018/81
22	6	0	0.011240	-0.239390	1 101262
23	0	0	-0.766760	-0.545888	1.191203
34	6	0	-2.224/21	-0.491327	1.16/698
35	6	0	1.489429	-0.2/6034	-0.0041/6
36	6	0	2.226630	-1.226212	0.725371
37	1	0	1.707719	-1.937047	1.356213
38	6	0	3.613555	-1.272104	0.639726
39	1	0	4.154776	-2.030811	1.196476
40	6	0	4.331691	-0.356168	-0.148853
41	6	0	3.593916	0.593637	-0.875782
42	1	0	4.117812	1.312707	-1.496328
43	6	0	2.206850	0.632106	-0.804701
44	1	0	1.671358	1.395446	-1.360915
45	6	0	5.818836	-0.436944	-0.249629
46	6	0	6.628679	0.659475	-0.147514
47	6	0	6 354383	-1 816010	-0 469685
48	6	0	5 798639	-2 649363	-1 456040
40	1	0	1 999393	-2 272449	-2 074241
4 9 E 0	Ĺ	0	4.909392	-2.2/2440	-2.074241
50	0	0	0.2/3988	-3.944034	-1.652125
51	L C	0	5.840516	-4.366386	-2.428/55
52	6	0	7.304921	-4.441954	-0.850342
53	l	0	7.672236	-5.453411	-0.997502
54	6	0	7.851721	-3.633551	0.147694
55	1	0	8.643854	-4.015681	0.785238
56	6	0	7.382186	-2.334746	0.335549
57	1	0	7.811172	-1.711656	1.113312
58	6	0	8.079106	0.626556	-0.507535
59	6	0	8.515195	0.093981	-1.732525
60	1	0	7.785518	-0.324431	-2.417706
61	6	0	9.866134	0.099840	-2.075078
62	1	0	10.179757	-0.312651	-3.029800
63	6	0	10.811739	0.636312	-1.199491
64	1	Õ	11 864714	0.638520	-1.465758
65	÷	0	10 202012	1 172532	0 017061
66	1	0	11 1000A0	1 602570	0 703707
67	⊥ €	0	LT.IZUU43	1 10/22/0	0.703/0/
0/	0	U	9.U4U536 0.700050	1.104338 1.0507	U.333619
60	Ţ	U	8.720259	1.01950/	1.295436
69	6	U	6.135530	I.984304	0.338318

70	6	0	6.452245	3.163361	-0.359399
71	1	0	7.041626	3.099152	-1.269060
72	6	0	6.015467	4.405275	0.097802
73	1	0	6.260361	5.302134	-0.464167
74	6	0	5.272099	4.498246	1.276130
75	1	0	4.938022	5.466599	1.637133
76	6	0	4.969551	3.338616	1.991900
77	1	0	4.402911	3.401098	2.916508
78	6	0	5.396010	2.095375	1.528058
79	1	0	5.158926	1.198364	2.090515

Total Energy (HF) = -2692.9483231Hartree

m-BT:

	Standard orientation:				
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Χ	¥	Ľ
1	16	0	9.706253	-0.654784	-0.573462
2		0	7.733018	0.908731	0.140583
3	6	0	10.097571	0.866554	0.200088
4	6	0	11.347134	1.405621	0.512604
5	1	0	12.263087	0.873786	0.276737
6	6	0	11.386413	2.649397	1.137870
7	1	0	12.347189	3.087582	1.390399
8	6	0	10.203602	3.343860	1.445817
9	1	0	10.264826	4.312011	1.933265
10	6	0	8.960474	2.808052	1.135156
11	1	0	8.038714	3.331214	1.366283
12	6	0	8.897600	1.555535	0.505646
13	6	0	7.970133	-0.234804	-0.425770
14	6	0	6.922508	-1.142485	-0.915858
15	6	0	5.580146	-0.819129	-0.663923
16	1	0	5.364315	0.083503	-0.108197
17	6	0	4.541407	-1.640456	-1.121160
18	6	0	4.872336	-2.810753	-1.829027
19	6	0	6.202361	-3.138802	-2.079630
20	1	0	6.441442	-4.048451	-2.621920
21	6	0	7.227467	-2.310928	-1.630466
22	1	0	8.260159	-2.575240	-1.837636
23	1	0	4.082526	-3.477567	-2.160369
24	6	0	3.119105	-1.286381	-0.902574
25	6	0	2.158471	-1.509927	-1.868299
26	6	0	2.640055	-0.697007	0.318500
27	1	0	2.464857	-1.921077	-2.825223
28	6	0	0.784858	-1.186906	-1.697846
29	7	0	3.386365	-0.424425	1.395037
30	6	0	1.230749	-0.365772	0.494336
31	1	0	0.117551	-1.368098	-2.534275
32	6	0	0.270227	-0.618158	-0.548644
33	16	0	2.375580	0.203746	2.525050
34	7	0	0.957157	0.147732	1.699586
35	6	0	-1.168718	-0.303611	-0.412321
36	6	0	-1.621966	0.841151	0.267393

37	6	0	-2.134559	-1.137830	-1.004155
38	1	0	-0.905514	1.502547	0.738634
39	6	0	-2.977957	1.140717	0.333907
40	6	0	-3.490560	-0.845280	-0.920341
41	1	0	-1.819720	-2.042345	-1.515573
42	1	0	-3.298144	2.042780	0.846125
43	6	0	-3.944973	0.298543	-0.242400
44	1	0	-4.211921	-1.513894	-1.377811
45	6	0	-5.395307	0.646645	-0.177271
46	6	0	-6.358941	-0.258071	0.170429
47	6	0	-5.709750	2.068531	-0.518254
48	6	0	-7.818656	0.009122	-0.009841
49	6	0	-6.037082	-1.590891	0.765968
50	6	0	-5.169737	2.662104	-1.672624
51	6	0	-6.499690	2.863286	0.329062
52	6	0	-8.330070	0.477512	-1.231959
53	6	0	-8.726339	-0.260381	1.029593
54	6	0	-6.652476	-2.757438	0.278597
55	6	0	-5.161325	-1.709463	1.858519
56	1	0	-4.540177	2.069307	-2.329535
57	6	0	-5.436956	3.993693	-1.985358
58	6	0	-6.757194	4.198490	0.022899
59	1	0	-6.909769	2.426846	1.233788
60	1	0	-7.646904	0.673465	-2.051651
61	6	0	-9.697173	0.688899	-1.401863
62	6	0	-10.092001	-0.037211	0.864084
63	1	0	-8.352049	-0.643343	1.974144
64	1	0	-7.348680	-2.682766	-0.551364
65	6	0	-6.375763	-4.001888	0.841640
66	6	0	-4.894168	-2.952386	2.429806
67	1	0	-4.691590	-0.817875	2.260452
68	1	0	-5.019710	4.428346	-2.889311
69	6	0	-6.231904	4.768154	-1.138235
70	1	0	-7.366360	4.795719	0.695381
71	1	0	-10.070487	1.046299	-2.357338
72	6	0	-10.583683	0.438319	-0.353074
73	1	0	-10.773604	-0.239835	1.685354
74	1	0	-6.852628	-4.891841	0.440701
75	6	0	-5.495110	-4.104758	1.920295
76	1	0	-4.217748	-3.019328	3.277069
77	1	0	-6.434155	5.808143	-1.377288
78	1	0	-11.648774	0.604970	-0.485256
79	1	0	-5.285209	-5.073329	2.364654

Total Energy = -2692.9468749Hartree

o-BT:

Standard orientation:

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	7.780349	-1.738778	-0.895963
2	6	0	6.485531	-1.218627	-0.742728
3	6	0	5.370049	-2.057324	-0.994365

4	6	0	5.607383	-3.372677	-1.419515
5	6	0	6.899036	-3.871512	-1.578027
6	1	0	7.046733	-4.897380	-1.901716
7	6	0	7.992450	-3.052025	-1.305688
8	1	0	9.005084	-3.425703	-1.421339
9	1	0	4.754074	-4.019651	-1.597489
10	6	0	3.957071	-1.635102	-0.810755
11	6	0	3.029783	-1.747600	-1.821439
12	6	0	3.454604	-1.173547	0.451290
1.3	1	0	3.359884	-2.085799	-2.799080
14	-	0	1.659576	-1.396072	-1.660790
15	7	0	4 175525	-1.052908	1.570062
16	6	0	2 053660	-0 815068	0 618430
17	1	0	1 014670	-1 474651	-2 530095
1.8	6	0	1 12/082	-0 927045	-0 177301
10	16	0	3 148660	-0 512460	2 732/39
20	10	0	1 756371	-0 126186	1 96/1/0
20	r G	0	1.750571	-0.420400	1.004149
22	6	0	-0.309343	-0.301793	-0.334203
22	6	0	-0.755005	1 200220	1 060640
23	0	0	-1.278092	-1.309320	-1.069640
24		0	-0.036027	1.069843	1.006806
25	6	0	-2.102237	0.826813	0.495003
26	6	0	-2.626/96	-0.982032	-0.998238
27	1	0	-0.9/2441	-2.159351	-1.6/2084
28	1	0	-2.413571	1.673551	1.098949
29	6	0	-3.072276	0.090316	-0.207099
30	1	0	-3.349648	-1.568275	-1.555476
31	6	0	-4.513509	0.476053	-0.151258
32	6	0	-5.514456	-0.432210	0.053357
33	6	0	-4.775709	1.937110	-0.333178
34	6	0	-6.957687	-0.102024	-0.153359
35	6	0	-5.252889	-1.833013	0.504963
36	6	0	-4.161924	2.648258	-1.379241
37	6	0	-5.590827	2.648387	0.563402
38	6	0	-7.403153	0.514375	-1.334906
39	6	0	-7.916240	-0.456020	0.812439
40	6	0	-5.879537	-2.917853	-0.133522
41	6	0	-4.425926	-2.100648	1.609057
42	1	0	-3.512086	2.119740	-2.070238
43	6	0	-4.381563	4.014863	-1.542257
44	6	0	-5.801658	4.017221	0.407394
45	1	0	-6.058260	2.119523	1.387376
46	1	0	-6.679933	0.778665	-2.099219
47	6	0	-8.755508	0.785915	-1.534644
48	6	0	-9.267053	-0.173349	0.618470
49	1	0	-7.593340	-0.952412	1.722553
50	1	0	-6.539731	-2.728889	-0.974644
51	6	0	-5.659175	-4.225641	0.294795
52	6	0	-4.214905	-3.407495	2.045016
53	1	0	-3 949489	-1.274675	2 126571
54	- 1	0 0	-3.907059	4.541788	-2.365279
55	÷ 6	0 0	-5 202749	4.705609	-0 649030
56	1	0	-6 431787	4 547610	1 115661
57	± 1	0	-9 077605	1 258367	-2 458278
58	÷ F	0	-9 692906	1.230307 0 118855	-0 556700
50 59	1	0	-0 000606 -0 000606	-U 113032	1 20/1/09
60	⊥ 1	0	-6 1/2050 -6 1/2050	-5 N/0703	_0 201725
61	т б	0	_/ Q75506	_A A76000	1 206561
υL	U	U	-4.023300	-4.4/0229	TOCOOT

62	1	0	-3.574860	-3.590011	2.903459
63	1	0	-5.368433	5.772088	-0.770971
64	1	0	-10.746469	0.662396	-0.711909
65	1	0	-4.659568	-5.494609	1.725695
66	1	0	8.632450	-1.088889	-0.722387
67	6	0	6.328577	0.200751	-0.379871
68	16	0	7.495776	0.973144	0.738176
69	7	0	5.393189	0.982189	-0.820127
70	6	0	6.614618	2.473139	0.555038
71	6	0	5.516967	2.264360	-0.317195
72	6	0	6.859299	3.722875	1.129225
73	6	0	4.656964	3.332037	-0.615810
74	1	0	7.700784	3.878453	1.796479
75	6	0	5.991626	4.767532	0.822086
76	6	0	4.900508	4.573560	-0.043012
77	1	0	3.820325	3.166362	-1.286208
78	1	0	6.162914	5.746979	1.258312
79	1	0	4.240640	5.406601	-0.265040

Total Energy = -2692.9392163Hartree

TDDFT calculation data of *p*-BT, *m*-BT and *o*-BT

p-BT:

Excitation energies and oscillator strengths:

State	1:	Singlet-A	3.1457	eV	394.14	nm	f=1.0583
000							
->177	0	.17522					
->177	-0	.34492					
->177	0	.56376					
te for	optimiza	tion and/or seco	ond-orde	er co	prrectio	on.	
erav. E	(TD-HF/T	D-KS) = -2691.7	73601105	5			
the exc	ited sta	te density for 1	this sta	ate a	as the 1	l-par	rticle
sity.	2000 000		01120 000			- Par	01010
State	2.	Singlet-A	3 8873	ρV	318 95	nm	f=0 1114
000	2 ·	biligice n	0.0070	CV	010.00	11111	- 0.1111
->177	0	12356					
->177	0	18699					
>170	0	10120					
-/1/9 \177	0	.10139					
>170	0	.20230					
->1/9	0	. 37320					
State	3:	Singlet-A	4.0919	eV	303.00	nm	f=0.9296
000							
->177	-0	.20780					
->177	-0	.20397					
->178	-0	.32420					
->179	0	.11324					
->177	-0	.12937					
->178	0	.28750					
->179	0	.38378					
	State 000 ->177 ->177 te for ergy, E the exc sity. State 000 ->177 ->177 ->179 State 000 ->177 ->179 State 000 ->177 ->178 ->177 ->178 ->177 ->178 ->177	State 1: 000 ->177 0 ->177 -0 ->177 0 te for optimiza ergy, E(TD-HF/T the excited sta sity. State 2: 000 ->177 0 ->177 0 ->179 0 State 3: 000 ->177 -0 ->177 -0 ->178 -0 ->178 0 ->179 0 ->177 0	State 1: Singlet-A 000 ->177 0.17522 ->177 -0.34492 ->177 0.56376 te for optimization and/or second ergy, E(TD-HF/TD-KS) = -2691.7 the excited state density for the sity. State 2: Singlet-A 000 ->177 0.12356 ->177 0.12356 ->177 0.48699 ->179 0.10139 ->177 0.26238 ->179 0.37320 State 3: Singlet-A 000 ->177 -0.20780 ->177 -0.20397 ->178 -0.32420 ->179 0.11324 ->177 -0.12937 ->178 0.28750 ->179 0.38378	State 1: Singlet-A 3.1457 000 ->177 0.17522 ->177 -0.34492 ->177 0.56376 te for optimization and/or second-orde ergy, E(TD-HF/TD-KS) = -2691.73601105 the excited state density for this state sity. State 2: Singlet-A 3.8873 000 ->177 0.12356 ->177 0.12356 ->177 0.48699 ->179 0.10139 ->177 0.26238 ->179 0.37320 State 3: Singlet-A 4.0919 000 ->177 -0.20780 ->177 -0.20397 ->178 -0.32420 ->179 0.11324 ->177 -0.12937 ->178 0.28750 ->179 0.38378	<pre>State 1: Singlet-A 3.1457 eV 000 ->177 0.17522 ->177 -0.34492 ->177 0.56376 te for optimization and/or second-order co ergy, E(TD-HF/TD-KS) = -2691.73601105 the excited state density for this state a sity. State 2: Singlet-A 3.8873 eV 000 ->177 0.12356 ->177 0.12356 ->177 0.48699 ->179 0.10139 ->177 0.26238 ->179 0.37320 State 3: Singlet-A 4.0919 eV 000 ->177 -0.20780 ->177 -0.20397 ->178 -0.32420 ->179 0.11324 ->177 -0.12937 ->178 0.28750 ->179 0.38378</pre>	<pre>State 1: Singlet-A 3.1457 eV 394.14 000 ->177 0.17522 ->177 -0.34492 ->177 0.56376 te for optimization and/or second-order correction ergy, E(TD-HF/TD-KS) = -2691.73601105 the excited state density for this state as the 1 sity. State 2: Singlet-A 3.8873 eV 318.95 000 ->177 0.12356 ->177 0.48699 ->179 0.10139 ->177 0.26238 ->179 0.37320 State 3: Singlet-A 4.0919 eV 303.00 000 ->177 -0.20780 ->177 -0.20397 ->178 -0.32420 ->179 0.11324 ->177 -0.12937 ->178 0.28750 ->179 0.38378</pre>	<pre>State 1: Singlet-A 3.1457 eV 394.14 nm 000 ->177 0.17522 ->177 -0.34492 ->177 0.56376 te for optimization and/or second-order correction. ergy, E(TD-HF/TD-KS) = -2691.73601105 the excited state density for this state as the 1-par sity. State 2: Singlet-A 3.8873 eV 318.95 nm 000 ->177 0.12356 ->177 0.12356 ->177 0.48699 ->179 0.10139 ->177 0.26238 ->179 0.37320 State 3: Singlet-A 4.0919 eV 303.00 nm 000 ->177 -0.20780 ->177 -0.20397 ->178 -0.32420 ->179 0.11324 ->177 -0.12937 ->178 0.28750 ->179 0.38378</pre>

Excited Sta	ate 4:	Singlet-A	4.2764	eV 289.92	nm f=0.2161
174 ->	U 1 7 7	0 13774			
175 ->	177	-0.19450			
175 ->	178	0.37111			
176 ->:	177	-0.22012			
176 ->	178	-0.17703			
176 ->:	179	0.36886			
176 ->:	180	0.12687			
Excited Sta	ate 5:	Singlet-A	4.5538	eV 272.27	nm f=0.0958
<s**2>=0.00</s**2>	0				
159 ->:	177	-0.10350			
164 ->	177	0.34192			
165 ->	⊥ / / 1 フフ	0.40546			
168 ->	177	-0.10285			
170 ->	177	0.12067			
171 ->	177	-0.13789			
172 ->:	177	-0.14165			
Excited Sta	ate 6:	Singlet-A	4.5719	eV 271.19	nm f=0.0795
<s**2>=0.00</s**2>	0				
159 ->:	177	0.25419			
159 ->:	178	-0.10794			
164 ->	⊥ / / 1 フフ	0.12/51			
167 ->	177	0.20175			
168 ->:	177	0.16433			
170 ->:	177	-0.16671			
171 ->:	177	0.16987			
172 ->	177	0.17325			
173 ->	177	0.15252			
1/3 ->	1/8	0.15318			
Excited Sta	ate 7:	Singlet-A	4.6098	eV 268.96	nm f=0.0302
<\$**2>=0.00	0 1 7 7	0 11205			
166 ->	エ <i>ノ /</i> 1 フフ	-0.11393			
168 ->	177	-0.11221			
170 ->	177	0.14739			
171 ->:	177	-0.12627			
172 ->:	177	-0.12040			
173 ->:	177	0.32693			
173 ->	178	0.38442			
175 ->:	182	-0.10626			
Excited Sta	ate 8:	Singlet-A	4.6304	eV 267.76	nm f=0.0735
<5**2>=0.00	U 1 7 7	0 15777			
102 ->: 171 -\`	⊥// 177	0.13///			
175 ->	⊥ / / 178	-0.14497			
176 ->:	177	-0.13226			
176 ->	178	0.20823			
Excited Sta	ate 9:	Singlet-A	4.7135	eV 263.04	nm f=0.0698
<s**2>=0.00</s**2>	0		• •		
159 ->	177	-0.24400			

159 ->178 166 ->177 167 ->177 167 ->178 173 ->177 173 ->178 175 ->184 176 ->181		0.10409 0.28328 -0.26785 -0.13488 0.11673 0.22115 -0.11085 0.10729					
Excited State <s**2>=0.000 159 ->177 159 ->178 166 ->178 167 ->177 167 ->178 174 ->177 175 ->182 176 ->180 176 ->181</s**2>	10:	Singlet-A 0.40056 -0.14463 0.13885 -0.20471 -0.17802 -0.13967 0.13162 -0.12365 -0.12290	4.7900	eV	258.84	nm	f=0.0010
Excited State <s**2>=0.000 159 ->177 162 ->177 172 ->179 174 ->178 174 ->179 175 ->178 175 ->178 175 ->179 176 ->180</s**2>	11:	Singlet-A 0.13011 0.10098 0.11624 -0.21564 -0.16594 -0.15380 0.20947 0.38576	4.8917	eV	253.46	nm	f=0.0808
Excited State <s**2>=0.000 162 ->177 162 ->178 163 ->177 163 ->178</s**2>	12:	Singlet-A -0.12436 -0.20992 0.28871 0.51971	4.9887	eV	248.53	nm	f=0.0026
Excited State <s**2>=0.000 163 ->178 166 ->177 170 ->177 170 ->179 172 ->179 174 ->178 175 ->181 176 ->180 176 ->181 176 ->183</s**2>	13:	Singlet-A -0.12145 -0.10861 0.14999 0.12946 0.18275 0.21569 0.12683 0.15368 -0.12129 0.32807 0.12127	5.0113	eV	247.41	nm	f=0.0523
Excited State <s**2>=0.000 168 ->179 169 ->179 171 ->177</s**2>	14:	Singlet-A 0.12512 -0.14491 -0.13436	5.0945	eV	243.37	nm	f=0.0559

171 ->179 174 ->178 175 ->180 176 ->178 176 ->180 176 ->181 176 ->183 176 ->185 176 ->187		-0.12343 -0.18732 -0.11391 -0.12215 -0.16325 0.26908 -0.23597 -0.11178 0.11938					
Excited State <s**2>=0.000 161 ->177 162 ->177 164 ->177 165 ->177 166 ->177 167 ->177 170 ->177 171 ->177 171 ->179 174 ->179 175 ->179 176 ->183</s**2>	15:	Singlet-A 0.10107 0.10191 -0.17061 0.14876 -0.13516 -0.10605 0.14320 0.17559 0.12154 -0.18873 0.21778 0.16295 -0.16176	5.1062	eV	242.81	nm	f=0.0139
Excited State <s**2>=0.000 169 ->183 171 ->179 172 ->177 172 ->179 172 ->181 176 ->181 176 ->187 176 ->189</s**2>	16:	Singlet-A 0.11617 0.33351 -0.22594 -0.16318 -0.11115 0.19338 -0.19972 0.13447	5.1434	eV	241.05	nm	f=0.0264
Excited State <s**2>=0.000 170 ->179 171 ->177 172 ->177 174 ->178 176 ->178 176 ->180 176 ->181 176 ->186 176 ->188 176 ->189</s**2>	17:	Singlet-A 0.26082 0.19185 0.16831 -0.17194 -0.16786 -0.18397 -0.12790 0.16762 0.10290 0.14491	5.2309	eV	237.02	nm	f=0.0476
Excited State <s**2>=0.000 162 ->177 169 ->177 170 ->179 172 ->179 174 ->178 176 ->180</s**2>	18:	Singlet-A -0.10073 -0.12436 0.23792 -0.12476 0.16069 0.25323	5.2709	eV	235.22	nm	f=0.0595

176	->187	0.	19921	-							
176	->188	-0.	11808	3							
176	->189	0.	13847	7							
Excited	State	19:	Singl	et-A		5.3383	eV	232.25	nm	f=0.0	606
<s**2>=0</s**2>	.000										
164	->177	0.	19500)							
165	->177	-0.	11418	3							
167	->177	0.	13162	2							
167	->178	-0.	10048	3							
168	->179	-0.	14226	5							
169	->177	-0.	12560)							
170	->177	-0.	13890)							
172	->179	0.	13097	7							
173	->177	0.	13356	5							
174	->179	-0.	14022	2							
175	->179	0.	14015	5							
175	->182	0.	10547	7							
176	->183	-0.	18225	5							
176	->184	0.	12308	3							
176	->185	0.	25180)							
Excited	State	20:	Singl	et-A		5.3440	eV	232.01	nm	f=0.0)256
<s**2>=0</s**2>	.000										
157	->177	-0.	12899)							
158	->177	0.	17490)							
159	->177	-0.	10207	7							
166	->177	-0.	15822	2							
166	->178	0.	16326	5							
167	->177	0.	16127	7							
167	->178	-0.	16775	5							
173	->177	0.	30715	5							
173	->178	-0.	13390)							
175	->182	0.	19803	3							
176	->182	-0.	14120)							
176	->185	-0.	16232	2							
SavETr:	write	IOETrn=	770	NScale=	10	NData=	= 1	6 NLR=1	NSta	ate=	20
LETran=	370.										

m-BT:

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 3.2699 eV 379.17 nm f=0.7519 <S**2>=0.000 174 ->177 0.18695 175 ->177 0.36501 176 ->177 0.55230 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -2691.73044038 Copying the excited state density for this state as the 1-particle RhoCI density.

174 ->177 175 ->177 176 ->177 176 ->179		0.13469 0.36824 -0.20755 0.50719			
Excited State <s**2>=0.000 175 ->177 176 ->177 176 ->179</s**2>	3:	Singlet-A -0.35225 0.33665 0.43098	4.2631 eV	290.83 nm	f=0.2711
Excited State <s**2>=0.000 164 ->177 174 ->177 174 ->178 175 ->177</s**2>	4:	Singlet-A 0.12617 0.48158 0.35858 -0.20870	4.3522 eV	284.87 nm	f=0.2409
Excited State <s**2>=0.000 173 ->178 174 ->177 174 ->178 175 ->178 176 ->178</s**2>	5:	Singlet-A -0.19392 0.21482 -0.32836 0.42763 0.17210	4.4543 eV	278.35 nm	f=0.2707
Excited State <s**2>=0.000 159 ->177 165 ->177 166 ->177 167 ->177 170 ->177 175 ->178</s**2>	6:	Singlet-A -0.10384 0.55122 -0.13479 -0.13054 0.10599 0.11484	4.5693 eV	271.34 nm	f=0.1237
Excited State <s**2>=0.000 159 ->177 165 ->177 166 ->177 168 ->177 169 ->177 170 ->177 172 ->177 174 ->178 176 ->182</s**2>	7:	Singlet-A 0.31730 0.22690 -0.15170 0.16288 -0.11192 -0.25898 0.19887 -0.11900 -0.10140 0.12219	4.6160 eV	268.60 nm	f=0.0951
Excited State <s**2>=0.000 170 ->177 172 ->177 172 ->179 174 ->177 174 ->178 175 ->177 175 ->178 175 ->178</s**2>	8:	Singlet-A -0.16585 0.15437 -0.10240 -0.20956 0.29675 0.11333 0.15745 -0.13393	4.6805 eV	264.90 nm	f=0.1826

176 ->178		0.23648					
176 ->180		0.17491					
176 ->181		0.11450					
176 ->182		0.11908					
Excited State	9:	Singlet-A	4.7619 6	∋V	260.37	nm	f=0.1218
<s**2>=0.000</s**2>		_					
173 ->177		0.13981					
173 ->178		0.54749					
173 ->186		-0.10242					
174 ->178		-0 14514					
174 ->183		-0 18179					
174 > 103 175 - > 178		0.15096					
175 2170		0.10715					
1/0 ->1/8		0.10/15					
Excited State	10.	Singlet-A	4 7819 4	⊃ 17	259 28	nm	f=0 0251
<pre><s**2>=0 000</s**2></pre>	10.	biligice n	1.7019		209.20		1 0.0201
150 -\177		0 41747					
159 ->177		0.41/4/					
159 ->100		-0.10900					
161 ->1//		-0.11197					
163 ->1//		0.106/4					
164 ->1//		0.11153					
166 ->1//		0.1054/					
174 ->177		-0.22232					
174 ->178		0.15165					
176 ->178		0.14201					
176 ->182		-0.15254					
Evolted State	11.	Singlot-N	1 8663 (577	25/ 78	nm	f-0 3055
Catted State	±±•	SINGLEC A	4.0005 6	ΞV	234.70	11111	1-0.3033
<5^^2>=0.000		0 10075					
159 ->177		0.12275					
1/0 ->1//		0.11490					
172 ->179		-0.11467					
174 ->177		0.13463					
174 ->178		-0.14032					
174 ->179		-0.12956					
175 ->179		-0.28649					
175 ->180		0.15549					
175 ->181		-0.10478					
176 ->180		0.36835					
176 ->181		0.18781					
	1.0		F 0010	- 77	046 00		
Excited State	12:	Singlet-A	5.0210 €	ΞV	246.93	nm	i=0.0834
<\$**2>=0.000		0 1 5 0 5 0					
166 ->177		0.17072					
167 ->177		0.15791					
168 ->177		-0.17895					
171 ->177		0.12152					
172 ->177		-0.11407					
172 ->179		-0.17872					
175 ->179		0.11312					
175 ->180		-0.14807					
176 ->181		0.22993					
176 ->182		0.26139					
176 ->184		-0.13464					
2.0 / 101							
Excited State <s**2>=0.000</s**2>	13:	Singlet-A	5.0371 6	€V	246.14	nm	f=0.0875

162 =>178 165 =>177 166 =>177 167 =>177 168 =>177 169 =>177 170 =>177 170 =>177 172 =>177 172 =>177 173 =>177 176 =>180 176 =>182		-0.10269 0.10117 0.14145 0.26588 -0.11556 -0.19395 -0.18994 0.13205 -0.11818 0.12298 -0.14470 0.20785 -0.23721			
Excited State <s**2>=0.000 162 ->178 162 ->194 163 ->178</s**2>	14:	Singlet-A 0.60220 0.12695 0.26904	5.0501 eV	245.51 nm	f=0.0020
Excited State <s**2>=0.000 168 ->179 169 ->179 171 ->177 172 ->177 173 ->177 175 ->179 175 ->180 176 ->181 176 ->183 176 ->184 176 ->185 176 ->187</s**2>	15:	Singlet-A -0.15682 0.13727 0.10885 -0.11201 -0.11013 -0.14568 0.14184 -0.19191 0.27045 -0.12626 0.17120 0.14776 -0.10924	5.1126 eV	242.51 nm	f=0.0119
Excited State <s**2>=0.000 169 ->184 171 ->177 171 ->179 172 ->177 172 ->182 172 ->185 176 ->182 176 ->187 176 ->188 176 ->189</s**2>	16:	Singlet-A 0.11747 -0.14816 0.38722 -0.11815 0.12473 -0.10780 0.14324 0.20251 0.10097 -0.15977	5.1493 eV	240.78 nm	f=0.0120
Excited State <s**2>=0.000 159 ->177 163 ->177 164 ->177 170 ->179 171 ->177 172 ->177 172 ->179</s**2>	17:	Singlet-A 0.14439 -0.13415 -0.13769 0.18536 0.12740 -0.24733 0.10443	5.2400 eV	236.61 nm	f=0.0065

173 175 176 176 176 176 176 176	->177 ->179 ->178 ->180 ->181 ->182 ->185 ->189	0. 0. 0. 0. 0. 0. 0. 0. 0.	29046 10457 11384 12473 10560 18211 11475 12124								
Excited <s**2>=0. 167 169 170 170 173 176 176 176 176</s**2>	State .000 ->177 ->177 ->177 ->179 ->179 ->177 ->180 ->182 ->187 ->189	18: 0. -0. -0. -0. 0. 0. -0. -0. -	Singl 12032 12645 10296 24348 40265 10980 12026 15078 14633	et-A		5.2749	eV	235.05	nm	f=0.	0162
Excited <s**2>=0. 164 166 170 172 173 174 175 175 176 176 176</s**2>	State .000 ->177 ->177 ->179 ->179 ->179 ->179 ->179 ->179 ->181 ->181 ->180 ->184	19: 0. 0. 0. -0. 0. -0. 0. -0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Singl 16216 11162 12594 12964 36441 11272 14940 10497 24606 10515 10358	et-A		5.2894	eV	234.40	nm	f=0.	0130
Excited <s**2>=0. 164 164 168 170 173 175 176 176 176 176</s**2>	State .000 ->177 ->178 ->179 ->177 ->177 ->180 ->180 ->181 ->181 ->185	20: -0. -0. 0. 0. 0. 0. 0. 0. -0. -	Singl 11157 13415 11719 11424 14748 18683 24778 10068 22202 24300	et-A	Ę	5.3483	eV	231.82	nm	f=0.	0542
SavETr: LETran=	write 370.	IOETrn=	770	NScale=	10	NData=	= 1	6 NLR=1	NSta	ate=	20

o-BT:

Excitation energies and oscillator strengths:

Excited	State	1:	Singlet-A	3.3551	eV	369.54	nm	f=0.5984
<s**2>=0.</s**2>	000							
174	->177	0.	.11463					
175	->177	-0.	.39084					

176 ->177 0.55385 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -2691.72082955Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Singlet-A 3.9867 eV 311.00 nm f=0.2957 < S * * 2 > = 0.000175 ->177 -0.35143 176 ->177 -0.14938 176 ->178 -0.10097 176 ->179 0.55045 Singlet-A 4.2860 eV 289.28 nm f=0.1865 Excited State 3: <S**2>=0.000 166 ->177 -0.14566 0.32980 174 ->177 175 ->177 0.36563 175 ->178 0.12602 176 ->177 0.25222 176 ->178 -0.13228 176 ->179 0.28821 Singlet-A 4.4219 eV 280.39 nm f=0.0349 Excited State 4: <S**2>=0.000 174 ->177 0.13090 174 ->178 0.15159 175 ->177 -0.15601 175 ->178 0.44293 176 ->177 -0.17021 176 ->178 -0.27360 176 ->179 -0.20584 176 ->180 -0.11937 4.4454 eV 278.91 nm f=0.0796 Excited State 5: Singlet-A <S**2>=0.000 -0.10819 167 ->177 174 ->177 0.52029 175 ->178 -0.22572 176 ->177 -0.21464 176 ->178 0.19003 Excited State 6: Singlet-A 4.6027 eV 269.38 nm f=0.1513 <S**2>=0.000 166 ->177 0.45238 167 ->177 0.32960 173 ->177 -0.14732 174 ->177 0.19428 0.10834 174 ->178 Excited State 7: Singlet-A 4.6569 eV 266.24 nm f=0.0134 <S**2>=0.000 159 ->177 0.32531 160 ->177 -0.15259 163 ->177 -0.13269 166 ->177 0.13411 168 ->177 0.18219 169 ->177 -0.12636

170 ->177 171 ->177 172 ->177 176 ->182		-0.19526 -0.20247 0.25653 0.15440			
Excited State <s**2>=0.000 173 ->177 173 ->178 173 ->185 174 ->178 174 ->183 176 ->178</s**2>	8:	Singlet-A 0.19538 0.39940 -0.13190 -0.38046 0.13858 -0.16420	4.6913 eV	7 264.29 nm	f=0.0918
Excited State <s**2>=0.000 159 ->177 160 ->177 161 ->177 163 ->177 170 ->177 171 ->177 172 ->177 172 ->179 173 ->177 176 ->182</s**2>	9:	Singlet-A 0.34952 -0.17669 -0.10159 -0.14591 0.10061 0.10331 -0.14781 0.15425 -0.16218 -0.22976	4.7780 eV	7 259.49 nm	f=0.0343
Excited State <s**2>=0.000 159 ->177 173 ->177 173 ->178 174 ->178 176 ->178</s**2>	10:	Singlet-A 0.14514 0.50295 0.10872 0.33997 0.11700	4.8439 eV	7 255.96 nm	f=0.0959
Excited State <s**2>=0.000 173 ->177 173 ->178 174 ->178 174 ->183 175 ->179 176 ->180 176 ->181</s**2>	11:	Singlet-A -0.31562 0.41074 0.27478 0.14366 0.12494 0.13815 -0.11300	4.8930 eV	7 253.39 nm	f=0.2812
Excited State <s**2>=0.000 159 ->177 167 ->177 170 ->177 172 ->179 173 ->177 173 ->178 174 ->179 175 ->179 176 ->180 176 ->181</s**2>	12:	Singlet-A 0.12807 0.10649 0.10758 -0.11811 0.19131 -0.14417 -0.11078 0.25696 0.30126 -0.21430	4.9132 et	7 252.35 nm	f=0.1679

Excited State	13:	Singlet-A	5.0360	eV	246.19	nm	f=0.0214
<s**2>=0.000</s**2>							
162 ->178		0.20031					
164 ->177		0.15603					
164 ->1/8		0.2/46/					
165 ->1//		-0.19/14					
165 ->1/8 167 \177		-0.1/921					
167 ->179		-0.10370					
107 = >170 174 = >181		0 11835					
175 ->180		0.18288					
176 ->181		-0.10567					
176 ->182		0.12889					
Excited State	14:	Singlet-A	5.0520	eV	245.42	nm	f=0.2489
<s**2>=0.000</s**2>		0 15004					
162 ->1/8		-0.1/284					
164 ->1/8 170 >177		-0.14095					
170 = 2177 170 = 2179		-0 13722					
171 ->177		0.11236					
171 ->179		-0.12876					
172 ->179		-0.12567					
175 ->182		0.13612					
176 ->180		-0.17209					
176 ->181		0.12772					
176 ->182		0.35346					
176 ->184		-0.10846					
176 ->187		0.13612					
Excited State	15.	Singlet-A	5 0991	ρV	243 15	nm	f=0 0101
< <u>S**2>=0.000</u>	10.	biligice n	5.0551	CV	240.10	11111	1 0.0101
162 ->178		0.17387					
164 ->177		0.12868					
164 ->178		0.12640					
167 ->177		0.11769					
167 ->179		-0.11235					
168 ->179		-0.10509					
175 ->179		0.22923					
175 ->181		0.11121					
1/6 ->180		-0.103/9					
176 ->181		0.21934					
176 ->184		0.25482					
176 ->186		0.11331					
Excited State	16:	Singlet-A	5.1554	eV	240.49	nm	f=0.0369
<s**2>=0.000</s**2>		0 101 55					
169 ->184		0.13160					
$\perp / \cup - \geq \perp / /$		U.16051					
171 _\17		-0.10031					
171 ->179		0.35858					
172 ->182		0.13273					
172 ->186		-0.11103					
176 ->187		-0.22087					
176 ->188		0.19459					

Excited	State	17:	Singlet-A	5.1989	eV	238.48	nm	f=0.0128
<s**2>=0.</s**2>	000							
165	->177		0.22700					
166 167	->1//	-	-0.12609					
167 100	->1//		0.18385					
168	->1//		0.10382					
169	->1//		0.13384					
109	->1/9	-	-0.12596					
172 172	->170		0.2/020					
172 175	->1/9 ->177	-	-0.11520					
175	->180		-0.10034					
176	->182	_	-0 19716					
176	->184	-	-0 14461					
176	->186	-	-0 15853					
1,0	>100		0.10000					
Excited	State	18:	Singlet-A	5.2463	eV	236.33	nm	f=0.0084
<s**2>=0.</s**2>	000							
162	->177		0.10782					
162	->178		0.36636					
164	->177	-	-0.18091					
164	->178		0.10062					
165	->177		0.15331					
175	->179	-	-0.16717					
176	->178		0.28443					
176	->182		0.11560					
Excited	State	19:	Singlet-A	5.2847	eV	234.61	nm	f=0.0383
<s**2>=0.</s**2>	000				-			
169	->177		0.11005					
170	->179		0.29642					
171	->177		0.13731					
172	->177	-	-0.12298					
175	->186	-	-0.11014					
176	->182		0.21474					
176	->186	-	-0.11742					
176	->187	-	-0.19321					
176	->188	-	-0.19349					
Excited	State	20:	Singlet-A	5.3408	eV	232.14	nm	f=0.0421
<s**2>=0.</s**2>	000		······································		•			
158	->177		0.14332					
162	->178	-	-0.14085					
165	->177		0.18181					
167	->177		0.15651					
168	->179	-	-0.11806					
172	->179		0.10351					
175	->180		0.12343					
176	->178	-	-0.13243					
176	->180		0.10160					
176	->181	-	-0.20885					
176	->186		0.25490					
SavETr:	write	IOETrn=	= 770 NScale=	10 NData=	= 10	6 NLR=1	NSta	te= 20
LETran=	370.							

Copies of NMR and HRMS of new compounds:

¹H NMR of *m*-BT:

HRMS of *m*-BT:

¹³C NMR of *m*-BT:

¹H NMR of *p*-BT:

¹³C NMR of *p*-BT:

¹H NMR of *o*-BT:

¹³C NMR of *o*-**BT**:

HRMS of *o*-TBT-BT6:

