Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supporting information

Highly efficient rare-earth-free deep red emitting phosphor La₂Li_{1-v}Sb₁₋

_xO₆:xMn⁴⁺,yMg²⁺: Application in high-power warm w-LEDs

Jiasong Zhong^{a,*}, Yongzhao Peng^a, Daqin Chen^{b,*}, Meijiao Liu^c, Xinyue Li^a, Yiwen Zhu^a,

Zhengguo Jia

^a College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

^b College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, P. R. China

^c Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of

Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China

Figure S1. PL spectra of the La₂LiSbO₆: Mn^{4+} with/without Mg^{2+} ions at different Mn^{4+} doping concentrations under 481nm excitation.

Figure S2. The excitation and emission spectra of the $La_2Li_{0.985}Sb_{0.985}O_6:0.015Mn^{4+}, 0.015Mg^{2+}$ and reference sample. Inset is the QYs of the $La_2LiSbO_6: Mn^{4+}$ with/without Mg^{2+} ions at different

Mn⁴⁺ doping concentrations.

Fig. S3 Decay curves of Ce³⁺: 5d emitting-state with various ratios of R:Y in the PiG samples

Table S1. The crystal field strength (D_q), Racah parameters (B, C), Nephelauxetic ratio (β_1) and

$^{2}\mathrm{E}$

Host	Dq(cm ⁻¹)	B(cm ⁻¹)	C(cm ⁻¹)	β_1	E(² E)(cm ⁻¹)	Ref.
Na ₂ SiF ₆	2174	775	3475	1.051	16210	1
Na_2SnF_6	2101	589	3873	1.033	16171	2
K_2MnF_6	2183	604	3821	1.029	16129	3
K ₂ TiF ₆	2137	582	3778	1.011	15835	4
K ₂ NaAlF ₆	2165	600	3815	1.027	16078	5
K ₂ LiAlF ₆	2160	650	3678	1.022	16000	5
MMG*	2380	700	3416	0.997	15576	6
CaAl ₁₂ O ₁₉	2132	807	3088	0.999	15244	7,8
SrMgAl ₁₀ O ₁₇	2237	791	3084	0.989	15152	9
$BaMg_2Al_{16}O_{27}$	2136	828	3013	0.98	15152	10
$Sr_4Al_{14}O_{25}$	2222	680	3397	0.983	15361	11-13
$Lu_3Al_5O_{12}$	2137	789	2990	0.97	14925	14
Mg_2TiO_4	2096	700	3348	0.985	15267	15
$Mg_2Al_4Si_5O_{18}$	2141	927	2560	0.996	14409	16
Li ₂ MgTi ₃ O ₈	2061.8	765.4	3004	0.9606	14700	17
Ba ₂ GdNbO ₆	1931	855	2859	0.9923	14793	18
Ba ₂ LaNbO ₆	1780	670	3290	0.958	14679	19
Ca ₂ LaNbO ₆	1934	838	2827	0.976	14599	20

energy level (E(²E)) of Mn⁴⁺ ion in various hosts

R:Y	Chromaticity	coordinate	$I \in (lm/W)$	CCT(K)	Ra
	Х	Y	LE (IIII/W)	сст (к)	Ka
0:3	0.3087	0.3495	107.8	6555	73.7
3:3	0.3279	0.3623	98.1	5799	77.8
6:3	0.3431	0.3701	89.7	5158	80.2
9:3	0.3608	0.3815	81.3	4646	83.5
12:3	0.3779	0.3926	74.8	4130	86.6

Table S2. Performances of the fabricated w-LEDs devices with various ratios of R:Y

References

- (1) Y.K. Xu and S. Adachi, J. Appl. Phys. 2009, 105, 013525.
- (2) Y. Arai and S. Adachi, J. Lumin. 2011, 131, 2652-2660.
- (3) R. Kasa, Y. Arai, T. Takahashi and S. Adachi, J. Appl. Phys. 2010, 108, 113503.
- (4) H.M. Zhu, C.C. Lin, W. Luo, S.T. Shu, Z.G. Liu, M. Wang, J.T. Kong, E. Ma, Y. Cao, R.S. Liu and X.Y. Chen, *Nat. Commun.* 2014, 5, 4312.
- (5) Y.W. Zhu, L.Y. Cao, M.G. Brik, X.J. Zhang, L. Huang, T.T. Xuan and J. Wang, J. Mater. Chem. C 2017, 5, 6420–6426.
- (6) Q.Y. Shao, H.Y. Lin, J.L. Hu, Y. Dong and J.Q. Jiang, J. Alloys. Compd. 2013, 552, 370-375.
- (7) T. Murata, T. Tanoue, M. Iwasaki, K. Morinaga and T. Hase, J. Lumin. 2005, 114, 207–212.
- (8) Y.X. Pan and G.K. Liu, Opt. Lett. 2008, 33, 1816–1818.
- (9) L. L. Meng, L. F. Liang and Y. X. Wen, J. Mater. Sci.: Mater. Electron. 2014, 25, 2676– 2681.
- (10) B. Wang, H. Lin, F. Huang, J. Xu, H. Chen, Z.B. Lin and Y.S. Wang, *Chem. Mater.* 2016, 28, 3515–3524.
- (11) Y.D. Xu, D. Wang, L. Wang, N. Ding, M. Shi, J.G. Zhong and S. Qi, J. Alloys Compd. 2013, 550, 226–230.
- (12) M.Y. Peng, X.W. Yin, P.A. Tanner, C.Q. Liang, P.F. Li, Q.Y. Zhang and J.R. Qiu, J. Am. Ceram. Soc. 2013, 96, 2870–2876.

- (13) M.Y. Peng, X.W. Yin, P.A. Tanner, M.G. Brik and P.F. Li, *Chem. Mater.* 2015, 27, 2938–2945.
- (14) Y.B. Chen, K.L. Wu, J. He, Z.B. Tang, J.X. Shi, Y.Q. Xu and Z.Q. Liu, J. Mater. Chem. C 2017, 5, 8828–8835.
- (15) J. Stade, D. Hahn and R. Dittmann, J. Lumin. 1974, 8, 318-325.
- (16) A.J. Fu, L.Y. Zhou, S. Wang and Y.H. Li, Dyes Pigments 2018, 148, 9–15.
- (17) S.A. Zhang, Y.H. Hu, H. Duan, Y.R. Fu and M. He, J. Alloys Compd. 2017, 693, 315-325.
- (18) A.J. Fu, C.Y. Zhou, Q. Chen, Z.Z. Lu, T.J. Huang, H. Wang and L.Y. Zhou, *Ceram. Inter.* 2017, **43**, 6353–6362.
- (19) A. M. Srivastava and M. G. Brik, J. Lumin. 2012, 132, 579-584.
- (20) Z.Z. Lu, H. Wang, D.Y. Yu, T.J. Huang, L.L. Wen, M.X. Huang, L.Y. Zhou, Q.P. Wang, Opt. Laser Technol. 2018, 108, 116–123.