Supporting Information

Synthesis, structure and nonlinear optical properties of solution-processed Bi₂TeO₅ nanocrystals

Bin Chen, Xingzhi Wang, Junqin Li, Qihua Xiong and Chaohua Zhang*

Table S1. Boiling temperature of the water and ethylene glycol mixed solvent at different composition, as well as the corresponding effect on the final products of the reaction.

Ethylene glycol	Water (ml)	Boling temperature	Final products	
(ml)		(°C)		
40	0	~196	Bi ₂ Te ₃	
40	1	~180	-	
40	2	~164	-	
40	3	~154	Bi ₂ Te ₃	
40	4	~148	-	
40	5	~141	Bi ₂ TeO ₅	
40	6	~136	Bi ₂ TeO ₅	
40	7	~131	Bi ₂ TeO ₅	
40	8	~128	Bi ₂ TeO ₅	

Note: The precursors $Bi(OOCCH_3)_3$, $K_2TeO_3 \cdot H_2O$ and KOH were set to 1.0, 1.5 and 10 mmol respectively, and the reaction time was set to 3 hours.

Sample	H ₂ O	КОН	Temperature	Theoretical	Experimental	Yield
	(ml)	(mmol)	(°C)	weight (g)	weight (g)	
1	8	1	~128	0.3128	0.2645	84.56%
2	7	1	~131	0.3128	0.2647	84.62%
3	6	1	~136	0.3128	0.2623	83.86%
4	6	5	~136	0.3128	0.2540	81.20%

Table S2. The reaction yield of 4 Bi_2TeO_5 nanocrystals with different growth conditions. The reaction yield is calculated by the ratio of the experimental weight and theoretical weight.

Note: Other same parameters: Bi(OOCCH₃)₃ 1 mmol; K₂TeO₃·H₂O 0.5 mmol; PVP 0.4 g; EG 40 ml.

Solution-	Growth	Reaction	Preparation	Morphology	Doforonco
growth time		temperature process		control	Kelerence
	30-96 h	220 °C	Without post-	Size control	Ref. 15
LINDU3			treatment	Size control	
BaTiO ₃	66 h	220 °C	Need protecting		Ref. 14
			gas and pre-	Size control	
			treatment		
VT:ODO	~56 h	100°C then	Multiple heat	Sizes control	Ref. 13
KIIOPO4		700 °C	treatment	Sizes control	
			Without further		
D: ToO	3 h	128-141 °C	heat treatment	Sizes and	This work
B121eO5			or the use of	Shapes control	
			protecting gas		

 Table S3. The comparison of solution growth strategies for different NLO nanocrystals.

Note: The reference number corresponds to the citation number in the manuscript.

Figure S1. Morphology control of the Bi₂TeO₅ nanocrystals by tuning the mixed solvent. The added H₂O is set to (a) 6, (b) 7 and (c) 8 ml with 1mmol KOH, and (d) 5, (e) 6 and (f) 8 ml with 10 mmol KOH. The other same growth parameters are set as: 40 ml EG; 1 mmol Bi(OOCCH₃)₃ and 0.5 mmol K₂TeO₃·H₂O.

Figure S2. Morphology control of the Bi₂TeO₅ nanocrystals by tuning the precursors. The added $Bi(OOCCH_3)_3$ - $K_2TeO_3 \cdot H_2O$ is set to (a) 1 mmol-0.5 mmol, (b) 1 mmol-1 mmol, (c) 1 mmol-1.5 mmol and (d) 2 mmol-2 mmol respectively. The other same growth parameters are set as: 40 ml EG/6ml H₂O mixed solvent; 10 mmol KOH.

Figure S3. Morphology control of the Bi₂TeO₅ nanocrystals by KOH. The added KOH is set to (a) 0, (b) 1, (c) 5 and (d) 10 mmol in the 4 samples respectively. The other same growth parameters are set as: 40 ml EG/6ml H₂O mixed solvent; 1 mmol Bi(OOCCH₃)₃ and 0.5 mmol K_2 TeO₃·H₂O.

Figure S4. XRD patterns of 5 different Bi₂TeO₅ nanocrystals under different growth conditions, which agree well with the reference Bi₂TeO₅ crystal structure (PDF#24-0154, Cell: 16.45 Å×5.52 Å×11.61 Å, $\alpha=\beta=\gamma=90^{\circ}$). The scale bars in the inset SEM images are 1 µm. The peak (004) increases as the crystal size of the samples increase, indicating the tendency of forming layered structures when those nanocrystals grow larger.