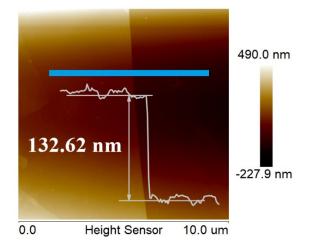
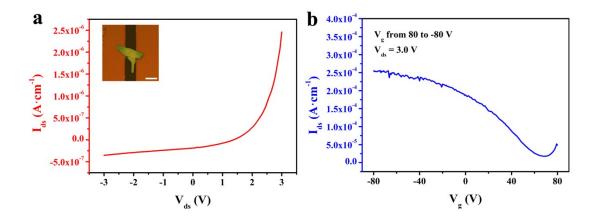
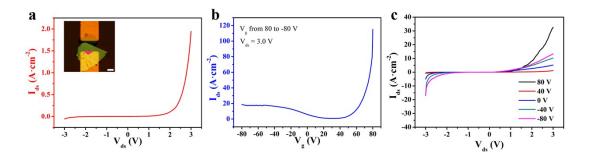
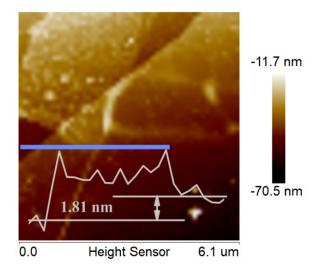

Supporting Information for


Out of plane stacking InSe-based heterostructures towards high performance electronic and optoelectronic devices using graphene electrode

Wei Gao 1 , Zhaoqiang Zheng 1* , Yongtao Li 1 , Congxin Xia 2 , Juan Du 2 , Yu Zhao 1 , Jingbo Li 1,3,4*


- ¹ College of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China.
- ² Physics and Electronic Engineering College, Henan Normal University, Xinxiang 453007, P. R. China.
- ³ State Key Laboratory of Precision Electronics Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, P. R. China.
- ⁴ State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China.
- * Corresponding authors: zhengzhq5@mail2.sysu.edu.cn; jbli@semi.ac.cn


Fig. S1 Fabrication process of the Gr-InSe/WSe₂-Gr heterostructure device. (a) Exfoliation of bottom graphene on SiO₂/Si substrate. The scale bar is 10 μm. (b) Stacking of WSe₂. (c) Stacking of InSe with PMMA film. (d) Remove PMMA. (e) Stacking of top graphene. (f) Patterning metal contacts to top-bottom graphene.


Fig. S2 Atomic Force microscopy (AFM) topography at the interface of the top graphene.

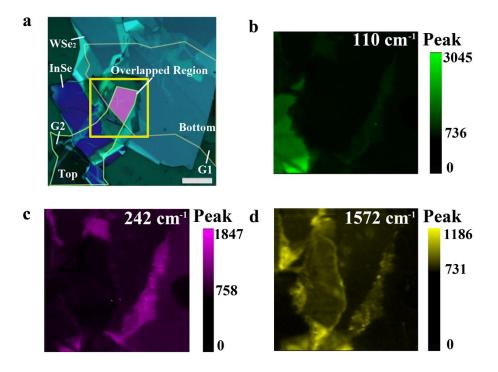
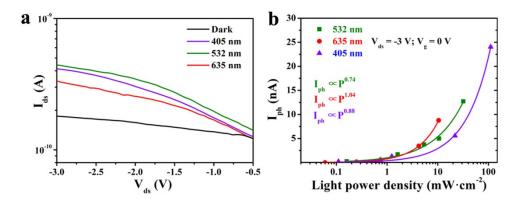

Fig. S3 Electrical performance of the Au-InSe-Au heterostructure device. (a) I_{ds} - V_{ds} curve of the device under dark condition. Inset is the optical image of the FETs device showing the red overlapped region, the scale bar is 10 μ m. (b) Transfer curves as a function of gate voltage under dark condition.

Fig. S4 Electrical performance of the Au-WSe₂-Gr heterostructure device. (a) I_{ds} - V_{ds} curve of the device under dark condition. Inset is the optical image of the FETs device showing the red overlapped region, the scale bar is 10 μ m. (b) Transfer curves as a function of gate voltage under dark condition. (c) Output characteristic curves of the device with gate voltage from 80 V to -80 V.


Fig. S5 Atomic Force microscopy (AFM) topography at the interface of the top graphene.

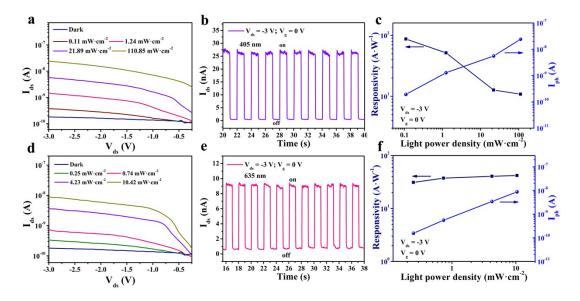

Fig. S6 (a) Optical image of the heterostructure with larger overlapped region. The Raman mapping of the yellow rectangle in (a): (b) 110 cm⁻¹ (InSe); (c) 242 cm⁻¹ (WSe₂); (d) 1572 cm⁻¹ (Graphene). The scale bar is 10 μ m. The overlapped region is about 159 μ m².

Fig. S7 Electrical properties of the FETs devices for graphene, vertical Gr-WSe₂-Gr and Gr-InSe-Gr. (a), (c), (e) I_{ds} - V_{ds} characteristic curves without the gate voltage. (b), (d), (f) Transfer curves. All scale bars are 10 μ m. The pink regions are overlapped areas.

Fig. S8 (a) I_{ds} - V_{ds} of the Gr-InSe/WSe₂-Gr photodetector under 405 nm, 532 nm and 635 nm or without illumination, the light power density is 0.27 mW·cm⁻², 0.16 mW·cm⁻² and 0.25 mW·cm⁻²; respectively. (b) Light power density dependence of the photocurrent.

Fig. S9 Optoelectrical properties of the Gr-InSe/WSe₂-Gr. (a) I_{ds} - V_{ds} curves dependent on the light power density under a 405 nm illumination and at dark. (b) Time trace of I_{ds} under a 405 nm illumination (110 mW·cm⁻²). (c) Photoresponsivity and photocurrent as a function of light power density under 405 nm. (d) I_{ds} - V_{ds} curves dependent on the light power density under a 635 nm illumination and at dark. (e) Time trace of I_{ds} under a 635 nm illumination (10.42 mW·cm⁻²). (f) Photoresponsivity and photocurrent as a function of light power density under 635 nm.

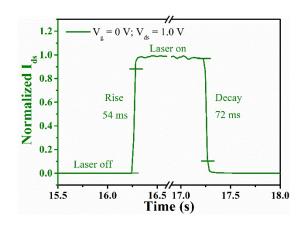


Fig. S10 Rising and decay time of the Gr-InSe-Gr photodetector under a 532 nm illumination ($P_{laser} = 238.9 \text{ mW} \cdot \text{cm}^{-2}$).

Table S1 Comparison of figures-of-merit for vertical graphene-photodetectors based on 2D layered materials

Materials	Measurement	Responsivity	EQE	D*	Respons	Ref.
	condition	(A/W)	(%)	(Jones)	e time	
Graphene-WSe ₂ /	532 nm	83	1.93×1	1.55×	36ms	In this
p-InSe-Graphene	$V_g = 0 V$		0^4	10^{12}	/18ms	work
	$V_{ds} = 3 V$					
Graphene-MoTe ₂	1064 nm	0.11	12.9	/	24μs	1
-Graphene	$V_g = 30 \text{ V}$					
	$V_{ds} = 0 V$					
Graphene-n-InSe	633 nm	10^{5}	10^{5}	10^{13}	/	2
-Graphene	$V_g = 0 V$					
	$V_{ds} = 2 V$					
Graphene-MoS ₂	514 nm	/	25	/	50μs	3
-Graphene	$V_g = -60 \text{ V}$					
	$V_{ds} = 0.5 \text{ V}$					
Graphene-p-GaSe/	410 nm	350	/	3.7×10^{12}	2μs	4
n-InSe-Graphene	$V_g = 0 V$					
	$V_{ds} = 2 V$					
Graphene-Ta ₂ O ₅	532 nm	10^{3}	/	/	0.75s	5
-Graphene	$V_{ds} = 1 V$					
Graphene-WSe ₂ /	520 nm	6.2±0.2	1490±	/	30μs	6
GaSe-Graphene	$V_g = 0 V$		50			
	$V_{ds} = -1.5 \text{ V}$					
Graphene-WSe ₂	759 nm	/	7.3	/	1.6ns	7
-Graphene	$V_g = 0 V$					
	$V_{ds} = 0.5 \text{ V}$					
h-BN-Graphene-	532 nm	0.12	34	/	/	8
MoS_2/WSe_2 -	$V_g = 0 V$					
Graphene	$V_{ds} = 0 V$					

Table S2 Comparison of figures-of-merit for lateral graphene-photodetectors based on 2D materials

Materials	Measurement condition	Responsivity (A/W)	EQE (%)	D* (Jones)	Response time	Ref.
Graphene-WSe ₂	532 nm	83	1.93×10 ⁴	1.55×10^{12}	36ms/18ms	In this
/p-InSe-Graphene	$V_g = 0 V$					work
	$V_{ds} = 3 V$					
Graphene-n-InSe	633 nm	4×10^{3}	5×10 ³	10^{10}	0.1 ms	2
-Graphene	$V_g = 0 V$					
	$V_{ds} = 2 V$					
Graphene-n-InSe-	500 nm	60	14850	/	120μs+5s	9
Graphene	$V_g = 0 V$					
	$V_{ds} = 10 \text{ V}$					
MoS ₂ -Glassy-	532 nm	0.0123	/	1.8×10 ¹⁰	35s	10
Graphene	$V_g = 0 V$					
	$V_{ds} = 1 V$					
Graphene-	532 nm	2340	5460	4.1×10 ¹¹	>1s	11
WS_2/MoS_2 -	$V_g = 0 V$					
Graphene	$V_{ds} = 10 \text{ V}$					
Graphene-WS ₂ -	532 nm	4500	/	/	2ms	12
Graphene	$V_g = 80 V$					
	$V_{ds} = 5 V$					

- Zhang, K. et al. Ultrasensitive near-infrared photodetectors based on a graphene-MoTe₂-Graphene vertical van der waals heterostructure. ACS Appl. Mater. Inter. 9, 5392-5398 (2017).
- 2. Mudd, G. W. et al. High broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures. *Adv. Mater.* **27**, 3760-3766 (2015).
- 3. Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. *Nat. Nanotechnol.* **8**, 952 (2013).
- 4. Yan, F. et al. Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe van der Waals heterostructures. *Nanotechnology* **28**, 27LT01 (2017).
- 5. Liu, C. et al. Graphene photodetectors with ultra-broadband and high responsivity

- at room temperature. Nat. Nanotechnol. 9, 273-278 (2014).
- 6. Wei, X. et al. Fast gate-tunable photodetection in the graphene sandwiched WSe ₂/GaSe heterojunctions. *Nanoscale* **9**, 8388-8392 (2017).
- 7. Massicotte, M. et al. Picosecond photoresponse in van der Waals heterostructures.

 Nat. Nanotechnol. 11, 42 (2016).
- 8. Lee, C. et al. Atomically thin p-n junctions with van der Waals heterointerfaces.

 Nat. Nanotechnol. 9, 676-681 (2014).
- 9. Luo, W. et al. Gate tuning of high-performance InSe-based photodetectors using Graphene Electrodes. *Adv. Opt. Mater.* **3**, 1418-1423 (2015).
- 10. Xu, H. et al. High detectivity and transparent few-layer MoS₂/Glassy-Graphene heterostructure photodetectors. *Adv. Mater.* (2018).
- 11. Tan, H. et al. Lateral graphene-contacted vertically stacked WS₂/MoS₂ hybrid photodetectors with large gain. *Adv. Mater.* **29**, (2017).
- 12. Aji, A. S. et al. High mobility WS₂ transistors realized by multilayer graphene electrodes and application to high responsivity flexible photodetectors. *Adv. Funct. Mater.* 27, (2017).