Supporting information

An Easy to Make Strong White AIE Supramolecular Polymer Act as Colour Tunable Photoluminescence Materials

Yan-Qing Fan,^[a] Juan Liu,*^[b] Yan-Yan Chen,^[a] Xiao-Wen Guan,^[a] Jiao Wang,^[a] Hong Yao,^[a]

You-Ming Zhang,^[a] Tai-Bao Wei* [a] and Qi Lin,* [a]

a: Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China. *E-mail: linqi2004@126.com; weitaibao@126.com.

b: College of Chemical Engineering, Northwest University for Nationalities, Lanzhou 730070, China. *E-mail: liujuan656@126.com

Table of Contents:

Materials and General Methods:	3
Results and Discussion:	4
Scheme S1. The synthesis of DTB	4
Figure S1. ¹ H NMR Spectrum of DTB.	5
Figure S2. ¹³ C NMR Spectrum of DTB	6
Figure S3. Mass Spectrum of DTB	6
Figure S4. IR Spectrum of DTB.	7
Table S1. Gelation property of supramolecular metallo-hydrogel.	7
Figure S5. Photographs of: a, DTB-G; b, solution of DTB-Th; c, gel of DTB-Tb; d, gel of DTB-	Eu;
e, gel of DTB-La; f, gel of DTB-Ce	7
Figure S6. FT-IR spectra of DTB and xerogel of DTB-Ms: (a) DTB-Eu, (b) DTB-La	8
Figure S7. FT-IR spectra of DTB and xerogel of DTB-Ms: (a) DTB-Ce, (b) DTB-Tb	8
Figure S8. FT-IR spectra of DTB and xerogel of DTB-Th	8
Figure S9. The Powder XRD patterns of DTB and xerogel of DTB-Tb or DTB-Eu	9
Figure S10. The Powder XRD patterns of DTB and xerogel of DTB-Ce or DTB-La.	9
Figure S11. The Powder XRD patterns of DTB and xerogel of DTB-Th	9
Figure S12. SEM images of xerogel (a) DTB, (b) DTB-Tb, (c) DTB-Eu, (d) DTB-La, (e) DTB-	Th
(powder), (f) DTB-Ce.	10

Materials and General Methods:

Materials: 4-aminopyridine, trimesoyl chloride, DMF, triethylamine, ethyl alcohol, Tb³⁺, Eu³⁺, La³⁺, Ce³⁺ and Th⁴⁺ and acids were reagent grade and used as received. Solvents were either employed as purchased or dried by CaCl₂. Fresh double distilled water was used throughout the experiment. Nuclear magnetic resonance (NMR) spectra were recorded on Varian Mercury 400 instruments. Mass spectra were recorded on a Bruker Esquire 6000 MS instrument. The infrared spectra were performed on a Digilab FTS-3000 Fourier transform-infrared spectrophotometer. Melting points were measured on an X-4 digital melting-point apparatus (uncorrected). Fluorescence spectra were recorded on а Shimadzu RF-5301PC spectrofluorophotometer. Study of scanning electron microscopy (SEM), Determination of the SEM images was performed on a JSM-6701F FE-SEM microscope.

Preparation of water suspension of DTB: About 10 mg of **DTB** was weighed out in a test bottle. Then, 2.0 mL deionized water was added into that test bottle followed by shaking for 1–3 min at room temperature, producing a viscous and milky suspension (0.5%).

Preparation of supramolecular polymer hydrogel (DTB-G): The **DTB** (0.0876 g, 2 $\times 10^{-4}$ mol) was added into the pure water (200 µL), after stirring about 4-5 min at room temperature, the mixture was heated to 90-95 °C, then cooled it to room temperature, obtained the supramolecular polymer hydrogel (**DTB-G**) (1 M).

Preparation of hydrogel based on Tb³⁺, **Eu³⁺**, **La³⁺ and Ce³⁺**: To a solution of Tb³⁺, Eu³⁺, La³⁺ and Ce³⁺ (20 μ L, 0.1 M) was added into the emission of **DTB** (200 μ L, 0.5 %). The mixture of emission and Tb^{3+} , Eu^{3+} , La^{3+} and Ce^{3+} was heated to obtain a colorless solution, cooling the above solution to give white hydrogel.

Preparation of colorless solution of DTB based on Th⁴⁺: To a solution of rare-earth metals Th⁴⁺ (20 μ L, 0.1 M) was added into the emission of **DTB** (200 μ L, 0.5 %). The mixture of emission and Th⁴⁺ was heated to obtain a colorless solution, cooling the above solution to give colorless solution of **DTB** based on Th⁴⁺.

Fluorescence titration: A serious of the gel with different equivalents guests were prepared by dissolving **DTB** (2 mg) and proper equivalent of guest in water (400 μ L). Then record their fluorescence intensity at 467 nm.

Preparation of the 365 nm ultraviolet LED coated with the DTB and serious of DTB-Ms: a serious of models of **DTB** and **DTB-M**s prepared from the xerogel were coated onto the LED lamp, upon illumination, it emits bright multicolor light including white-light.

Results and Discussion:

Scheme S1. The synthesis of DTB.

The gelator **DTB** was synthesized by simple classical reaction between 4-aminopyridine and trimesoyl chloride. To a solution of mixture of trimesoyl chloride (0.2639 g, 1.0 mmol) and triethylamine (1-2 d) was slowly dropwise added

into the solution of 4-aminopyridine (0.3105 g, 3.3 mmol) in DMF (10 mL), the mixture was stirred at room temperature for 12 h, appearing a pale solid. The solid is vacuumed suction filtration and washed with cold ethyl alcohol (10 ml), finally the product solid was followed by drying in a vacuum oven at 40 °C for 24 h. Yield: 0.0421g (96%). M.P.: 167 °C. ¹H NMR (400 MHz, DMSO-*d*₆, room temperature) δ (ppm): 11.78 (s, 3 H), 8.99 (s, 3 H), 8.68 (m, 6 H), 8.25 (m, 6 H); ¹³C NMR (DMSO-*d*₆, 150MHz): 165.68, 149.58, 135.07, 131.36, 114.75; ESI-MS m/z: [M]+ Calcd: C₂₄H₁₈N₆O₃: 439.14, found 439.19; IR (anhydrous KBr, cm⁻¹) v: 3421 (w) (N-H), 3080 (w) (C-H on pyridyl and phenyl group), 1710 (w) (C=O), 1508 (w) (C=N on pyridyl).

Figure S1. ¹H NMR Spectrum of DTB.

Figure S3. Mass Spectrum of DTB.

Figure S4. IR Spectrum of DTB.

 Table S1. Gelation Property of supramolecular metallo-hydrogel.

Ion	Solution	State	CGC(%)	Tgel(°C)
Tb^{3+}	H ₂ O	G	0.5%	58.5
Eu^{3+}	H_2O	G	0.5%	76.1
La ³⁺	H_2O	G	0.5%	56.1
Ce ³⁺	H ₂ O	G	0.5%	53.7

G=gelation

Figure S5. Photographs of: a, DTB-G; b, solution of DTB-Th; c, gel of DTB-Tb; d, gel of DTB-Eu; e, gel of DTB-La; f, gel of DTB-Ce.

Figure S6. FT-IR spectra of DTB and xerogel of DTB-Ms: (a) DTB-Eu, (b) DTB-La.

Figure S7. FT-IR spectra of DTB and xerogel of DTB-Ms: (a) DTB-Ce, (b) DTB-Tb.

Figure S8. FT-IR spectra of DTB and xerogel of DTB-Th.

Figure S9. The Powder XRD patterns of DTB and xerogel of DTB-Tb or DTB-Eu.

Figure S10. The Powder XRD patterns of DTB and xerogel of DTB-Ce or DTB-La.

Figure S11. The Powder XRD patterns of DTB and xerogel of DTB-Th.

Figure S12. SEM images of xerogel (a) DTB, (b) DTB-Tb, (c) DTB-Eu, (d) DTB-La, (e) DTB-Th (powder), (f) DTB-Ce.