Electronic supplementary information (ESI)

Cadmium(II) coordination polymers based on 2-(4-((E)-2-(pyridine-2-yl)vinyl)styryl)pyridine and dicarboxylate ligands as fluorescent sensor for TNP

Xiu-Du Zhang,^a Ji-Ai Hua, ^{a,b} Jin-Han Guo,^a Yue Zhao, *a and Wei-Yin Sun^a

^a Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China

^b Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan,030008, China.

* Corresponding author.

Email address: zhaoyue@nju.edu.cn (Y. Zhao).

	1	2	3
Formula	$C_{28}H_{20}N_2O_4Cd$	$C_{28}H_{20}N_2O_4Cd$	C ₂₉ H ₂₄ N ₂ O ₅ Cd
Formula weight	560.86	560.86	592.90
Т (К)	153(2)	153(2)	153(2)
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	<i>C2/c</i>	<i>C2</i>	$P2_{1}/c$
<i>a</i> (Å)	17.9642(12)	21.789(3)	10.1343(5)
<i>b</i> (Å)	6.5854(4)	10.1900(11)	11.5821
<i>c</i> (Å)	20.6384(18)	10.2278(12)	20.8179
β (°)	114.147(2)	97.291(2)	93.369(2)
$V(Å^3)$	2227.9(3)	2252.5(4)	2439.3(2)
Ζ	4	4	4
D_{calc} (g cm ⁻³)	1.672	1.654	1.614

Table S1 Crystal data and structure refinements for 1-3.

<i>F</i> (000)	1128	1128	1200	
θ for data collection (°)	2.541-24.996	1.88-25.01	2.673-25.008	
Reflections collected	7492	2094	10594	
Unique reflections	1967	2094	4289	
Goodness-of-fit on F^2	1.097	1.076	0.989	
R_1 ,	0.0227	0.0261	0.0295	
$wR_2 [I > 2\sigma(I)]^{a,b}$	0.0646	0.0609	0.0683	
R_1 ,	0.0251	0.0308	0.0361	
wR_2 [all data]	0.0662	0.0638	0.0713	
${}^{a}R_{1} = \Sigma F_{o} - F_{c} / \Sigma F_{o} . {}^{b}wR_{2} = \Sigma w(F_{o} ^{2} - F_{c} ^{2}) / \Sigma w(F_{o})^{2} ^{1/2}, \text{ where } w = m = 1 / [\sigma^{2}(F_{o}^{2})]$				
$+(aP)^2+bP$]. P = $(F_0^2 + 2F_c^2)/3$				

Table S2Selected bond lengths (Å) and angles (°) for assembly 1 - 3 $\,$

1					
Cd(1)-N(1)	2.284(2)	Cd(1)-O(1)	2.295(2)		
Cd(1)-O(2)	2.474(2)				
N(1)-Cd(1)-N(1)#1	120.64(10)	N(1)-Cd(1)-O(1)	118.82(6)		
N(1)#1-Cd(1)-O(1)	102.67(7)	O(1)-Cd(1)-O(1)#1	89.79(8)		
N(1)-Cd(1)-O(2)#1	83.03(6)	N(1)#1-Cd(1)-O(2)#1	87.78(6)		
O(1)-Cd(1)-O(2)#1	143.25(6)	O(1)#1-Cd(1)-O(2)#1	55.09(6)		
O(2)#1-Cd(1)-O(2)	161.39(8)				
		2			
Cd(1)-O(4)#1	2.295(4)	Cd(1)-O(3)#2	2.356(3)		
Cd(1)-N(2)	2.360(5)	Cd(1)-O(1)	2.373(4)		
Cd(1)-O(2)	2.453(3)	Cd(1)-N(1)#3	2.463(5)		
O(4)#1-Cd(1)-O(3)#2	96.04(19)	O(4)#1-Cd(1)-N(2)	139.81(16)		
O(3)#2-Cd(1)-N(2)	81.0(2)	O(4)#1-Cd(1)-O(1)	82.86(15)		
O(3)#2-Cd(1)-O(1)	93.08(18)	N(2)-Cd(1)-O(1)	137.18(15)		
O(4)#1-Cd(1)-O(2)	136.5(2)	O(3)#2-Cd(1)-O(2)	85.67(11)		
N(2)-Cd(1)-O(2)	83.5(2)	O(1)-Cd(1)-O(2)	53.7(2)		
O(4)#1-Cd(1)-N(1)#3	85.15(16)	O(3)#2-Cd(1)-N(1)#3	163.90(17)		
N(2)-Cd(1)-N(1)#3	87.70(16)	O(1)-Cd(1)-N(1)#3	102.98(16)		

3					
Cd(1)-O(1)	2.267(2)	Cd(1)-O(3)#1	2.347(2)		
Cd(1)-O(1W)	2.349(2)	Cd(1)-N(1)	2.379(3)		
Cd(1)-N(2)#1	2.408(3)	Cd(1)-O(4)#1	2.484(2)		
O(1)-Cd(1)-O(3)#1	133.12(7)	O(1)-Cd(1)-O(1W)	85.68(7)		
O(3)#1-Cd(1)-O(1W)	94.56(7)	O(1)-Cd(1)-N(1)	143.96(8)		
O(3)#1-Cd(1)-N(1)	82.49(8)	O(1W)-Cd(1)-N(1)	86.01(8)		
O(1)-Cd(1)-N(2)#1	89.26(8)	O(3)#1-Cd(1)-N(2)#1	101.17(8)		
O(1W)-Cd(1)-N(2)#1	162.39(8)	N(1)-Cd(1)-N(2)#1	88.23(9)		
O(1)-Cd(1)-O(4)#1	79.59(7)	O(3)#1-Cd(1)-O(4)#1	53.78(7)		
O(1W)-Cd(1)-O(4)#1	85.85(7)	N(1)-Cd(1)-O(4)#1	134.56(8)		
N(2)#1-Cd(1)-O(4)#1	109.82(8)				

Symmetry transformations used to generate equivalent atoms: #1 - x + 1, y, -z + 1/2; for 1; #1 x,y,z-1; #2 - x + 1,y,-z+2; #3 x,y,z+1 for 2; #1 x-1,y,z for 3.

Table S3Hydrogen bonding data of **2**and**3**.

2				
<i>D</i> –H···A	d(D-H) (Å)	$d(H \cdots A)$ (Å)	$d(D \cdots A)(A)$	D–H···A (°)
C(2)- $H(2)$ ···O(4)	0.9500	2.4500	3.143(8)	129
C(4)- $H(4)$ ···O(1)	0.9500	2.3500	3.267(8)	162
C(6)-H(6)····O(2)	0.9500	2.4300	3.362(8)	169
$C(9)-H(9)\cdots O(2)$	0.9500	2.3500	3.295(8)	171
C(15)-H(15)····O(3)	0.9500	2.5000	3.436(9)	167
C(18)-H(18)····O(1)	0.9500	2.628	3.474(9)	148
C(20)-H(20)····O(2)	0.9500	2.3700	3.010(9)	124
		3		
O(1W)-H(1WB)····O(1)	0.8400	1.9500	2.754(3)	162
O(1W)-H(1WA)…O(4)	0.8800	1.9700	2.770(3)	151
$C(1)-H(1)\cdots O(1)$	0.9500	2.5000	3.208(4)	131
C(3)-H(3)····O(4)	0.9500	2.3900	3.298(4)	160
C(6)-H(6)····O(3)	0.9500	2.3400	3.279(4)	170
C(7)-H(7)···O(1)	0.9500	2.5600	3.437(4)	153
C(10)-H(10)····O(2)	0.9500	2.5300	3.432(4)	159

C(12)-H(12)····O(3)	0.9500	2.5300	3.468(4)	172
C(15)-H(15)····O(2)	0.9500	2.3400	3.277(4)	170
C(20)-H(20)····O(3)	0.9500	2.3200	2.946(4)	123

Scheme 1The structure of ligand L and auxiliary carboxylate ligands used.

Fig. S1 The chain of Cd(II)-L in 3.

Fig. S2 The chain of Cd(II)-*m*-BDC-CH₃ in 3.

Fig. S3 PXRD patterns of complexes 1 - 3.

Fig. S4 TG curves of **1** - **3**.

Fig. S5 IR spectra of **1** - **3**.

Fig. S6(a)Emission spectra of L and dicarboxylate ligands in the solid state at room temperature. (b) Emission spectra of 1 - 3 and ligand L in the solid state at room temperature.

Fig. S7 Lifetimes of **1-3** dispered in DMF before and after the addition of the DMF solution of TNP.

	KSV (M ⁻¹)	Reference
1	5.72×10^{4}	This work
2	$4.67 imes 10^4$	This work
3	1.86×10^{5}	This work
CP-C60 composite assembly	3.75×10^{5}	1
[CP (NH2BDC) (DMF)]	7.2×10^3	2
$\{[Zn(IPA)(L)]\}_n/\{[Cd(IPA)(L)]\}_n$	$2.16 imes 10^4 / 1.52 imes 10^4$	3
$[Zn(\mu_2-1H-ade)(\mu_2-SO4)]_n$	3.14×10^{4}	4
$\{(H_2pip)[Fe(pydc-2,5)_2(H_2O)] \cdot 2H_2O\}$	$6.2 imes 10^4$	5
$[Ca(DMF)_4Ag_2(SCN)_4]_n$	1.74×10^4	6
$\{[Zn_3(mtrb)_3(btc)_2] \cdot 3H_2O\}_n$	3.26×10^{4}	7
$[Cd(NDC)L]_2 \cdot H_2O$	$3.7 imes 10^4$	8

Table S4 Comparison of the K_{SV} of **1** - **3** towards TNP with other materials.

Fig. S8 PXRD patterns of complexes **1** - **3** and their recovered samples after five cycles immersed in the DMF solution of TNP. .

Fig. S9 The normalized emission bands of complexes **1** - **3** and UV-vis absorption of ANand selected nitroaromatic compounds (other analytes exclued due to no absorption bands in the range of 300 -800 nm).

	HOMO (eV)	LUMO (eV)	Energy gap (eV)
TNP	-6.967	-5.816	1.151
1	-6.057	-4.022	2.035
2	-5.928	-4.043	1.885
3	-5.856	-3.966	1.891

 Table S5Frontier molecular orbital energies for complexes 1 -3 and TNP at the genralized

 gradient approximation GGA-PBE level of theory.

References

[1] A. Nilchi, M. Yaftian, G. Aboulhasanlo, S. R. Garmarodi, *J. Radioanal. Nucl. Chem.*, 2009, 279, 65-74.

[1] D. K. Singha, P. Mahata, RSC Adv., 2015, 5, 28092-28097.

[2] K. S. Asha, G. S. Vaisakhan, S. Mandal, Nanoscale, 2016, 8, 11782-11786.

[3] D. Parmar, Y. Rachuri, K. K. Bisht, R. Laiya, E. Suresh, *Inorg. Chem.*, 2017, 56, 2627-2638.

[4] Y. Rachuri, B. Parmar, K. K. Bisht, E. Suresh, Cryst. Growth Des., 2017, 17, 1363-1372.

[5] D. K. Singha, P. Mahata, Dalton Trans., 2017, 46, 11344-11354.

[6] X. L. Yin, S. C. Meng, J. M. Xie, J. Cluster Sci., 2018, 29, 411-416.

[7] Y. Q. Zhang, V. A. Blatov, T. R. Zheng, C. H. Yang, L. L. Qian, K. Li, B. L. Li, B. Wu, *Dalton Trans.*,2018, 47, 6189-6198.

[8] B. Q. Song, C. Qin, Y. T. Zhang, X. S. Wu, L. Yang, K. Z. Shao, Z. M. Su, *Dalton Trans.*, 2015, 44, 18386-18394.