Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supplementary information

Synthesis, oxide formation and dielectric properties of amorphous aluminium oxide using a chimie douce solution precursor route

Nico Koslowski^a, Shawn Sanctis^a, Rudolf C. Hoffmann^a, Michael Bruns^b and Jörg J. Schneider^{a*}

Crystal data and structure refinement

Empirical formula	C21 H30 AI N3 O18	C21 H30 AI N3 O18		
Formula weight	639.46	639.46		
Temperature	293(2) K	293(2) K		
Wavelength	0.71073 Å	0.71073 Å		
Crystal system	Monoclinic			
Space group	C2/c			
Unit cell dimensions	a = 12.159(1) Å	a= 90°.		
	b = 17.395(2) Å	b= 106.62(1)°.		
	c = 15.406(2) Å	g = 90°.		
Volume	3122.3(6) Å ³			
Z	4			
Density (calculated)	1.360 Mg/m ³	1.360 Mg/m ³		
Absorption coefficient	0.145 mm ⁻¹	0.145 mm ⁻¹		
F(000)	1336	1336		
Crystal size	0.400 x 0.180 x 0.04	0.400 x 0.180 x 0.040 mm ³		
Theta range for data collection	2.777 to 25.350°.	2.777 to 25.350°.		
Index ranges	-14<=h<=14, -20<=k	-14<=h<=14, -20<=k<=20, -11<=l<=18		
Reflections collected	5911	5911		
Independent reflections	2858 [R(int) = 0.0495	2858 [R(int) = 0.0495]		
Completeness to theta = 25.242°	99.7 %	99.7 %		
Absorption correction	Semi-empirical from	Semi-empirical from equivalents		
Max. and min. transmission	0.994 and 0.944	0.994 and 0.944		
Refinement method	Full-matrix least-squa	Full-matrix least-squares on F ²		

Data / restraints / parameters	2858 / 4 / 215
Goodness-of-fit on F ²	0.841
Final R indices [I>2sigma(I)]	R1 = 0.0582, wR2 = 0.1270
R indices (all data)	R1 = 0.1716, wR2 = 0.1584
Extinction coefficient	n/a
Largest diff. peak and hole	0.496 and -0.230 e.Å ⁻³

Fig. S1: a) Photography of tris[(diethyl-2-nitromalonato)]aluminum(III)-crystals. b) Single crystal structure of tris(diethyl-2-nitromalonato)aluminum. ORTEP-illustration. Vibrational ellipsoids are given with 30 % probability. O-Al-bond length (185-188 pm); O-Al-O-bond angle (90± 3°).

Fig. S2: Mass spectrum (MS-EI) of tris[(diethyl-2-nitromalonato)]aluminum(III) (overview).

Fig. S3: Mass spectrum (MS-EI) of tris[(diethyl-2-nitromalonato)]aluminum(III) (zoom-in).

Fig. S4: ²⁷Al-NMR-spectrum (CDCl₃) of tris[(diethyl-2-nitromalonato)]aluminum(III).

Fig. S5: ²⁷Al-NMR-spectrum of empty crucible.

Fig. S6: ¹³C-NMR-spectrum (CDCl₃) of tris[(diethyl-2-nitromalonato)]aluminum(III).

Fig. S7: DEPT-spectrum (CDCl₃) of tris[(diethyl-2-nitromalonato)]aluminum(III).

Fig. S8: ¹H-NMR-spectrum (CDCl₃) of tris[(diethyl-2-nitromalonato)]aluminum(III).

Fig. S9: FTIR-spectrum of tris[(diethyl-2-nitromalonato)]aluminum(III).

Tab S1: Characteristic vibrational bonds of tris[(diethyl-2-nitromalonato)]aluminum(III).

1

wavenumber / cm ⁻¹	vibrational type	chemical compound
-------------------------------	------------------	-------------------

2979 /2934 /2870	ν (-CH ₃) / ν (-CH ₂ -)	saturated carbohydrate	
1602 / 1513	v _{as} (RCOO ⁻)	carbonyl compound	
1435	v _s (-RCOO ⁻)	carbonyl compound	
1348	v (C-NO ₂)	nitro compound	
784	v (C=C)	alkene	
522	v (Al-O)	metal oxide	

Fig. S10: XRD of empty crucible.

method	sample	thickness (nm)	density (g/cm³)
XRR	Al _x O _y -200	170	2,18
ellipsometry	Al _x O _y -200	169,55	/
XRR	Al _x O _y -350	122	2,26
ellipsometry	Al _x O _y -350	123,89	/

Tab.S2: Summary of XRR and specroscopic ellipsometry measurements.

Fig. S14: Schematic representation of the device geometry of the fabricated thin film transistor.