## Supporting Information for

## $Ba_2M(C_3N_3O_3)_2$ (M = Mg, Ca): Potential UV Birefringent Materials with Strengthened Optical Anisotropy Originated from $(C_3N_3O_3)^{3-}$ Group

Zhuang Li,<sup>†,‡</sup> Fei Liang,<sup>†,‡</sup> Yangwu Guo,<sup>†,‡</sup> Zheshuai Lin,<sup>†</sup> Jiyong Yao,<sup>†</sup> Guochun Zhang,<sup>†,\*</sup> Wenlong Yin,<sup>!,\*</sup>

Yicheng Wu,<sup>†,¶</sup> and Chuangtian Chen<sup>†</sup>

<sup>†</sup> Center for Crystal Research and Development, Key Lab Functional Crystals and Laser Technology of Chinese Academy of Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China

<sup>‡</sup>University of Chinese Academy of Sciences, Beijing 100190, PR China

<sup>1</sup>Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, People's Republic of China

<sup>¶</sup>Institute of Functional Crystal Materials, Tianjin University of Technology, Tianjin 300384, P.R. China

Corresponding author:

\*E-mail: gczhang@mail.ipc.ac.cn.

\*E-mail: wlyin@caep.cn.



Figure S1. (a) Scanning electron microscopy (SEM) image of BMCY. (b) Elemental analysis of BMCY by EDX spectroscopy. (c) Elemental distribution of the as-grown crystal (from left to right: Ba Mg C N O).



Figure S2. (a) Scanning electron microscopy (SEM) image of BCCY. (b) Elemental analysis of BCCY by EDX spectroscopy. (c) Elemental distribution of the as-grown crystal (from left to right: Ba Ca C N O).



Figure S3 The infrared spectrum of BCCY.



Figure S3 Band gap of BMCY (a) and BCCY (b), deduced from UV–vis/NIR diffuse reflectance spectrum.

**Table S1.** Fractional atomic coordinates (×10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup>×10<sup>3</sup>) for Ba<sub>2</sub>Mg(C<sub>3</sub>N<sub>3</sub>O<sub>3</sub>)<sub>2</sub>. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalized U<sub>ij</sub> tensor.

|      |      |      |           | Wyckoff |         |
|------|------|------|-----------|---------|---------|
| Atom | X    | у    | Z         | site    | U(eq)   |
| Ba   | 0    | 0    | 7834.4(2) | 6c      | 13.3(2) |
| Mg   | 3333 | 6667 | 6667      | 3a      | 10.5(6) |

| 0 | 3583(4) | 4420(4) | 7452.9(14) | 18f | 14.2(6) |
|---|---------|---------|------------|-----|---------|
| Ν | 4465(5) | 1735(5) | 7436.8(18) | 18f | 14.6(7) |
| С | 5111(6) | 3904(6) | 7436.7(18) | 18f | 9.6(7)  |

**Table S2.** Fractional atomic coordinates (×10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup>×10<sup>3</sup>) for Ba<sub>2</sub>Ca(C<sub>3</sub>N<sub>3</sub>O<sub>3</sub>)<sub>2</sub>. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalized U<sub>ij</sub> tensor.

|      |          |         |            | Wyckoff |         |
|------|----------|---------|------------|---------|---------|
| Atom | Х        | у       | Z          | site    | U(eq)   |
| Ba   | 3333.3   | 6666.7  | 4535.9     | 6c      | 14.6    |
| Ca   | 6666.7   | 3333.3  | 3333.3     | 3a      | 12.1    |
| 0    | 6836(3)  | 5939(3) | 4189.7     | 18f     | 16.1    |
| Ν    | 10488(4) | 8336(4) | 4140.1(15) | 18f     | 14.3(5) |
| С    | 8408(5)  | 7942(5) | 4153.0(16) | 18f     | 12.3(6) |

Table S3. Selected bond lengths (Å) and angles (°) for  $Ba_2Mg(C_3N_3O_3)_2$ .

| Mg–O×1 | 2.131(3) | Ba–O×3 | 2.871(2) |
|--------|----------|--------|----------|
| Mg–O×5 | 2.132(3) | Ba–O×3 | 2.911(3) |
| C-O×1  | 1.285(4) | C-N-C  | 116.7(4) |
| C-N×1  | 1.346(5) | O-C-N  | 117.2(3) |
| C-N×2  | 1.361(5) | O-C-N  | 119.5(3) |
| Ba–N×3 | 2.803(3) | N-C-N  | 123.3(3) |

Table S4. Selected bond lengths (Å) and angles (°) for Ba<sub>2</sub>Ca(C<sub>3</sub>N<sub>3</sub>O<sub>3</sub>)<sub>2</sub>.

| Ca–O×6 | 2.356(2) | Ba–O×3 | 2.835(2) |
|--------|----------|--------|----------|
| C–O×1  | 1.291(4) | Ba–O×3 | 2.903(2) |
| C-N×2  | 1.351(4) | N-C-O  | 118.5(3) |
| Ba–N×3 | 2.881(2) | N-C-O  | 117.1(3) |

|                      |     | n <sub>o</sub>   | n <sub>e</sub>   | Δn                  |
|----------------------|-----|------------------|------------------|---------------------|
| BMBO                 | cal | 1.7273           | 1.6272           | 0.1011              |
|                      | exp | 1.6966           | 1.5886           | 0.1080              |
| atom-cutting results |     | Ba <sup>2+</sup> | Mg <sup>2+</sup> | $(B_3O_6)^{3-1}$    |
|                      |     | 0.010            | 0.013            | 0.103               |
|                      |     | n <sub>o</sub>   | n <sub>e</sub>   | Δn                  |
| BMCY                 | cal | 1.9903           | 1.6452           | 0.3451              |
|                      | exp | -                | -                | -                   |
| atom-cutting results |     | Ba <sup>2+</sup> | Mg <sup>2+</sup> | $(C_3N_3O_3)^{3-1}$ |
|                      |     | 0.08             | 0.078            | 0.347               |

 Table S5. Atom-cutting analysis and calculated refractive index of BMCY and BMBO.

**Table S6**. The selected bond length and band population of BMBO and BMCY.

| BMBO |        |            | ВМСҮ |        |            |
|------|--------|------------|------|--------|------------|
| bond | length | population | bond | length | population |
| Ва-О | 2.766  | 0.06       | Ва-О | 2.875  | 0.04       |
| Ва-О | 2.880  | 0.04       | Ва-О | 2.912  | 0.02       |
| Ва-О | 2.895  | 0.05       | Ba-N | 2.803  | 0.13       |