Colorimetric Detection and Ratiometric Quantification of Mercury (II) Using Azophenol Dye: 'Dip & Read' Based Handheld Prototype Device Development

Gagandeep Singh,^a Pushap Raj,^a Harupjit Singh,^b Narinder Singh^{a*}

 ^a Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab 140001, India
 ^b Centre for Biomedical Engineering, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab 140001, India

Corresponding author: Tel.; +91-1881242176; E-mail address: nsingh@iitrpr.ac.in

SUPPLYMENTRY INFORMATION

Figure S₁: ¹H NMR spectrum of compound 3

Figure S2: Mass Analysis spectrum for compound 3

2-((2-(dimethylamino)ethyl)amino)methyl)-4-((4-nitrophenyl)diazenyl)phenol (2)R_f 0.33 (CHCl₃/hexane 8:2); Dark red powder, Yield = 75%).

Figure S₃: ¹H NMR spectrum of compound 2

¹H NMR (CDCl₃, 400 MHz):

 δ 8.32 (m, 2H, Ar-H), 7.92 (m, 2H, Ar-H), 7.83 (m, 1H, Ar-H), 7.67 (s, 1H, Ar-H), 6.92 (m, 1H, Ar-H), 5.34 (br s, 2H, OH and NH), 4.09 (s, 2H), 2.73 (t, 2H, *J* = 6.0 Hz), 2.46 (t, 2H, *J* = 6.0 Hz), 2.23 (s, 6H, CH₃ × 2).

Figure S₄. ¹³C NMR spectrum of compound 2

¹³C NMR (CDCl₃, 100 MHz):

 δ 163.74, 156.27, 148.05, 145.76, 126.10, 124.80, 123.54, 123.11, 123.01, 117.33, 57.85, 52.11, 45.56, 29.78

Elemental Composition Report Page 1 Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Odd and Even Electron lons 8 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 15-20 H: 20-25 N: 0-5 O: 0-3 Sample Name : 59-R-GSPD INDIAN INST Test Name : HRMS-1 100717-59-R-GSPD- 8 (0.097) AM2 (Ar,18000.0,0.00,0.00); Cm (6:14) INDIAN INSTITUTE OF TECHNOLOGY ROPAR XEVO G2-XS QTOF 1: TOF MS ES+ 4.10e+007 344,1702 100 % 345.1734 663.4606 683.4293 575 70 570.3431 589.2947 550 575 600 256.0698 328.9764 430,2090 475,3265,491,3004 400 425 450 475 500 525 346.1767 741.2618 725 750 700 D-300 625 650 275 325 350 375 600 250 675 Minimum: -1.5 5.0 10.0 Maximum: 50.0 Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula 344.1702 344.1723 -2.1 -6.1 9.5 539.9 n/a n/a C17 H22 N5 03

Figure S₆. HRMS spectrum for compound 2

HRMS (ESI, m/z):

calculated for $C_{17}H_{22}N_5O_3$ [M + H]⁺, 344.1723, found 344.1702.

Figure S7: ¹H NMR Spectrum of Probe 1

Figure S₈: ¹³C NMR Spectrum of Probe 1

Elemental Composition Report

Single Mass Tolerance = Element prec Number of is	s Analysis 10.0 PPM / [liction: Off otope peaks us	DBE: min sed for i-f	n = -1.5, r FIT = 3	max = 50	0.0						
Monoisotopic I 58 formula(e) Elements Used C: 20-25 H	Mass, Even Elec evaluated with 1 1: : 25-30 N: 0-6	tron lons results w 6 O: 0-	ithin limits 3 S: 0-3	s (up to 50 3) best <mark>i</mark> soto	pic match	ies for each	mass)			
Sample Name :	GSPD-75-B			INDIAN IN	STITUTE OF	- TECHNO	LOGY			XEVO G2	-XS QTOF
Test Name : 110817-GSPD-7	HRMS-1 5-B- 9 (0.117) AM2	? (Ar, 18000.	0,0.00,0.00); Cm (9:11))	R				1: TO	F MS ES+ 4.06e+007
100 % 445.1965	479. 479.0775	1840 480.1871 481.184	⁸ _495.1892	523.30	91 537 3183	555.148	14 581.358	3 593.1805 6	00.2035 620.4	²¹⁶ 628.2135	mışıı m/z
440 450	460 470 4	80 490	500 51	0 520	530 540	550 5	60 570	580 590	600 610	620 630	640
Minimum: Maximum:		5.0	10.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
479.1840	479.1865	-2.5	-5.2	14.5	411.7	n/a	n/a	C24 H27	N6 03 S		

Figure S₉: HRMS Spectrum of Probe 1

Crystal structure description:

Experimental details: The X-ray diffraction data for NS327 were collected on a Bruker D8 Venture PHOTON 100 CMOS CCD diffractometer at 293 K using mirrors monochromatized Mo-K α radiation ($\lambda = 0.71073$ Å). The crystals were positioned at 50 mm from the CCD and the diffraction spots were measured using a counting time of 10 s. Data reduction and multiscan absorption were carried out using the APEX II program suite (Bruker, 2007). Crystal of NS327 was solved with olex2.solve52 structure solution program using Charge Flipping and refined with the olex2.refine refinement package using Gauss–Newton minimization.[1]

Table S ₁ : Bond Lengths for probe 1.							
Atom Atom		Length/Å	Aton	n Atom	Length/Å		
C7	C6	1.387(4)	C15	C16	1.378(6)		
C7	C8	1.387(4)	C15	C14	1.406(5)		
C6	C11	1.386(4)	C3	C4	1.526(3)		
C6	N3	1.416(3)	C3	N1	1.463(4)		
C12	C13	1.506(4)	C4	N2	1.472(3)		
C12	N2	1.470(3)	C22	C21	1.353(6)		
C8	C9	1.374(5)	C22	C23	1.370(5)		
C5	N2	1.358(3)	C22	N6	1.464(5)		

Page 1

C5	S 1	1.694(3)	C21	C20	1.282(7)
C5	N3	1.342(3)	C23	C24	1.391(5)
C11	C10	1.377(4)	N6	03	1.192(5)
C10	C9	1.378(5)	N6	O2	1.201(5)
C13	C18	1.391(4)	N1	C2	1.461(4)
C13	C14	1.391(4)	N1	C1	1.464(3)
C18	C17	1.377(4)	C24	C19	1.455(7)
C17	C16	1.362(6)	N5	C19	1.479(6)
C17	N4	1.575(5)	N5	N4	1.189(5)
01	C14	1.353(4)	C19	C20	1.372(7)

Table S_2 : Bond Angles for probe 1

Atom Atom Atom		n Atom	Angle/°	Atom Atom Atom		n Atom	Angle/°
C8	C7	C6	119.7(3)	N1	C3	C4	111.5(2)
C7	C6	N3	117.0(2)	N2	C4	C3	115.2(2)
C11	C6	C7	119.8(2)	C21	C22	C23	125.0(4)
C11	C6	N3	122.9(2)	C21	C22	N6	116.1(4)
N2	C12	C13	113.4(2)	C23	C22	N6	118.9(4)
C9	C8	C7	120.1(3)	C20	C21	C22	120.2(5)
N2	C5	S 1	122.1(2)	C22	C23	C24	116.6(4)
N3	C5	N2	114.4(2)	O3	N6	C22	118.6(4)
N3	C5	S 1	123.53(18)	O3	N6	O2	122.8(5)
C10	C11	C6	119.9(3)	O2	N6	C22	118.6(5)
C11	C10	C9	120.4(3)	C3	N1	C1	111.7(2)
C18	C13	C12	119.4(3)	C2	N1	C3	111.6(2)
C14	C13	C12	122.8(3)	C2	N1	C1	109.6(2)
C14	C13	C18	117.9(3)	C12	N2	C4	114.9(2)
C17	C18	C13	122.7(3)	C5	N2	C12	122.2(2)
C8	C9	C10	120.1(3)	C5	N2	C4	122.9(2)
C18	C17	N4	110.5(3)	C5	N3	C6	128.6(2)
C16	C17	C18	118.8(4)	C23	C24	C19	116.8(4)
C16	C17	N4	130.7(3)	N4	N5	C19	106.4(4)
C16	C15	C14	120.3(4)	C24	C19	N5	122.3(5)
C17	C16	C15	120.9(3)	C20	C19	C24	120.6(4)
C13	C14	C15	119.4(3)	C20	C19	N5	117.1(5)
01	C14	C13	123.6(3)	N5	N4	C17	106.7(4)
01	C14	C15	117.0(3)	C21	C20	C19	120.7(5)

Table S ₃ : Hydrogen Atom Coordinates (A	$\times 10^4$) and Isotropic Displacement Parameters
$(Å^2 \times 10^3)$ for probe 1	

Atom	x	У	z	U(eq)
H7	-514	3980	5958	64
H12A	1220	2884	2212	58
H12B	-459	2763	2069	58
H8	491	4210	7333	86
H11	3258	1524	5404	61
H10	4225	1734	6785	78
H18	-1133	800	1450	71
H9	2847	3074	7746	89
H1	3122	1207	2724	112
H15	3569	-1750	1721	103
H16	1741	-2605	986	108
H3A	-2568	3000	3343	61
H3B	-3268	1573	3758	61
H4A	-704	511	4222	54
H4B	-1172	548	3216	54
H21	-3108	-5000	-1274	112
H23	-5905	-1864	-366	95
H2A	-3809	1168	5305	100
H2B	-2808	1718	5989	100
H2C	-2125	530	5412	100
H1A	-3286	4696	4249	106
H1B	-3450	4234	5298	106
H1C	-4510	3717	4632	106
H3	-361	2393	4808	53
H24	-3918	-1209	419	113
H20	-1231	-4520	-505	120

Figure S_{10} : DLS histogram of probe 1 (ONP) showing a particle distribution under 117 for DMF/Water solvent system

Figure S_{11} : DLS histogram of probe 1 (ONP) showing a particle distribution under 386 for ACN/Water solvent system

Figure S_{12} : Comparison of absorbance spectra of probe 1 in different solvent systems such as Water and ACN

Figure S₁₃**: a)** The thermal back relaxation data of probe 1; b) Absorbance as a function of wavelength before and after UV illumination

Figure S_{14} : A) Effect of varied pH on the absorbance of Probe 1; B) Salt effect on absorbance of Probe 1

Figure S₁₅: Interference study with Different metal ions

Figure S₁₆: Mass analysis data of compound 4

Table S₄: HOMO and LUMO energies and HOMO-LUMO separation (ΔE) for probe 1 and Dye 4 by DFT calculations.

Sample	Spiked Sample with Hg ²⁺ (µM)	% Recovery
Satluj River Water	2	101
	4	99
	6 8	98 99 5
	10	102
	12	98
	14	99
	16 18	97
	20^{10}	90
	$\tilde{22}$	101
	24	102
	26	99
	28	98.3 97
	32	99
	34	101
	36	103
	38	99.5 08
Pond Water	2	90
	$\overline{4}$	97
	6	99
	8	100.5
	10	99.3 97
	14	99.5
	16	98
	18	97
	20	98.0 102
	22	98
	26	97
	28	97
	30	99 103
	32	99
	36	98
	38	96
Tan Water	40	103
Tap water	4	99
	6	97
	8	96
	10	101
	12	103
	16	98
	18	96
	20	101
	22 24	99
	$\overline{26}$	97
	28	99
	30	98 102
	32 34	105 97
	36	101
	38	98
	40	99

 Table S₅: Determination of Hg²⁺ ions in real water samples

Hardware Design:

Figure S₁₇: Hardware Design