Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supporting Information

All-Printed, Tunable Sensing Range Strain Sensors Based on Ag

Nanodendrites Conductive Ink for Wearable Electronics

Bin Tian,^a Weijing Yao,^a Pan Zeng,^a Xuan Li,^a Huanjun Wang,^a Li Liu,^a Yu Feng,^a

Chengsheng Luo,^a Wei Wu^{a,b,c*}

^a Laboratory of Printable Functional Nanomaterials and Printed Electronics, School of

Printing and Packaging, Wuhan University, Wuhan 430072, P. R. China

^b Shenzhen Research Institute of Wuhan University, Shenzhen 518057, P. R. China

^c National & Local Joint Engineering Research Center of Advanced Packaging

Materials Developing Technology, Hunan University of Technology, Zhuzhou

412007, P. R. China

Corresponding author: weiwu@whu.edu.cn (W. Wu)

Table S1. Viscosity of various Ag NDs inks at different shear rates.

	0.1 s ⁻¹ @ Avg.	200 s ⁻¹ @	0.1 s ⁻¹ @ 61 s	Recovery	0.1 s ⁻¹ @ 70 s	Recovery
	(0-30 s)	Avg. (30-60 s)		@ 61 s		@ 70 s
Ag NDs Ink-	504 (Do o	0.78 Da a	216 2 Do a	62 70/	480.4 Do a	05 29/
55 wt.%	304.0 Pa s	0.78 Pa S	510.5 Pa S	02.770	480.4 Pa S	93.2%
Ag NDs Ink-	22 0 Da a	0.72 Da a	2 7 Do c	00/	21 9 Da a	(4.20/
50 wt.%	55.9 Pa s	0.75 Pa s	2.7 Pa S	870	21.8 På S	04.3%
Ag NDs Ink-	1 2 Do o	0.20 Pa a	0.24 Pa a	26 20/	0.62 Da a	10 50/
45 wt.%	1.5 Pa \$	0.29 Pa S	0.34 Pa S	20.3%	0.05 Pa \$	40.3%

^{*}To whom correspondence should be addressed. Tel: +86-27-68778529. Fax: +86-27-68778433. E-mail: <u>weiwu@whu.edu.cn</u> (W. Wu).

Figure S1. (a), (b) and (c) Optical photographs and corresponding magnified photographs of Ag NDs patterns printed from Ag NDs ink-55 wt.%, Ag NDs ink-50 wt.%, Ag NDs ink-45 wt.%, respectively, and the printing substrate is nitrile rubber (scale bar is 1 cm).

Table S2. Comparison of the solid content of the conductive materials, drying condition

Filler specifications	Polymer matrix	Solid content	Conductivity (S m ⁻¹)	Reference	
Ag platelet, 1.2-2.2 µm	PDMS	86 wt.%	3 × 10 ⁴	[1]	
Ag coated Cu flakes, 10% Ag	PDMS	83wt.%	$6.7 imes 10^4$	[2]	
Ag powder; 1-3 μm	PDMS	82 wt.%	$2.3 imes 10^4$	[3]	
Ag powder, 2-3.5 µm	PDMS	79.3 wt.%	600	[4]	
Ag powder, 2 µm	PDMS	73 wt.%	8.3×10^{3}	[5]	
Ag Flake	Paper	70 wt.%	5.26×10^4	[6]	
Ag coated polystyrene					
nanospheres (PS@Ag),	P(St-BA) latex	60 wt.%	$6.96 \pm 1.19 {\times}~10^4$	[7]	
~600 nm, 90 wt% Ag					
Ag flakes	PDMS	56 wt.%	7.38×10^{4}	[8]	
Ag coated polystyrene					
microspheres (PS@Ag),	PDMS	42.8 wt.%	4.12×10^4	[9]	
2-11 μm					
PEDOT	PUF	30 wt.%	4.7×10^2	[10]	
SWCNT	PDMS	10 wt.%	108	[11]	
Ag NDs	Nitrile rubber	50 wt.%	1.14×10^5	This work	

and conductivity of the conductive pattern.

The formula for calculating the conductivity;

$$R_{\Box} = R_{x} \times F(D/S) \times F(W/S) \times F_{sp}$$
(1)

$$\sigma = 1/R_{\Box} \times W \tag{2}$$

where R_{\Box} is the sheet resistance, R_x is the resistance measured by low resistance tester, D is the sample diameter, S is the average probe distance, W is the sample thickness, F_{sp} is the probe spacing correction factor, F (D/S) is the sample diameter correction factor, F (W/S) sample thickness correction factor, σ is the conductivity.

In this work, the average R_x measured is 0.053 Ω ; F (D/S) is 4.171, F (W/S) is 1, F_{sp} is 0.995, Selected by the instrument's Schedule; W is 40.64 μ m.

Figure S2 Optical micrograph of printed traces with line widths of 200 μ m (a) and

300 µm (b).

Figure S3. Optical photographs of screen-printing plates.

Figure S4. Optical photographs of PSSs with different line-types (a) and line-widths (b).

Figure S5. Optical photographs of PSSs with different line-types (rectangular wave (a), zigzag (b), sinusoid (c)) under 0% (I), 50% (II), 100% (III), and 150% (IV) strain, respectively.

Figure S6. Optical photograph of multiple PSSs obtained simultaneously.

Materials	Manufacturing	Workable	Maximum	Fastest	D
Materials	method	strain range	gage factor	response time	Reference
Gold nanofilms/Paper	Direct-current sputtering method	0.59%	75.8 (0-0.59%)	20 ms (0.11%- 0.12%)	[12]
CNTs/PDMS	Mold	25%	15 (15%-25%)	Not shown	[13]
Ag NWs/PDMS	Glass mold	70%	14 (30%)	200 ms (90%)	[14]
Carbon black/PDMS	Mold	80%	5.5 (0-10%)	Not shown	[15]
Ag flake/ Nanoparticle/PDMS	Patterned tape	80%	7.1 (80%)	Not shown	[16]
Fragmented carbonized melamine sponges/PDMS	Vacuum filtration + Casting	80%	18.7 (40%- 80%)	240 ms	[17]
Graphene– Nanocellulose Nanopaper/PDMS	Coating	100%	7 (100%)	Not shown	[18]
Reduced graphene oxide-based fiber	Dip-coating	100%	10 (0-1%)	<100 ms (0.5%)	[19]
Carbonized cotton fabric/Ecoflex	Dip-coating	140%	64 (80-140%)	Not shown	[20]
Graphene/PDMS	Deposition + Coating	150%	15	Not shown	[21]
Ag NWs/ Dragon Skin	Silicon mold	150%	81 (130-150%)	Not shown	[22]
CNTs/PDMS	Spain-coating	150%	160 (0-2%)	Not shown	[23]
Ionic liquids/Ecoflex	Soft lithography + Spin coating + Injection method +Mask	200%	40 (200%)	Not shown	[24]
Ag NWs/Polyurethane	Layer-by-layer filtration	250%	70	Not shown	[25]
Reduced graphene oxide/Ecoflex	Mask + Injection method	400%	31.6 (390%- 400%)	60.3 ms (80%)	[26]
Ag NDs/Nitrile rubber	Screen printing	straight line 0.5mm:	straight line 0.5mm:	18 ms	This work

Table S3. Comparison of the manufacturing method of strain sensors and their sensing performance.

50% 117.2 (50%)
straight line straight line
2mm; 105% 2 mm; 294.8
sinusoid; (105%)
170% sinusoid;
488.7
(170%)

Figure S7. The change in length of the PSSs before and after 50% strains stretching.

Figure S8 Time response of the PSSs ($\varepsilon = 50\%$).

Figure S9. SEM images of the PSSs with line-widths of 0.5 mm at 0% (a) and 50% (b) strain. SEM images of the PSSs with line-widths of 1 mm at 0% (c) and 65% (d) strain.

Figure S10. Optical photograph of intelligent glove.

References

[1] X. Z. Niu, S. L. Peng, L. Y. Liu, W. J. Wen, P. Sheng, Adv. Mater. 2007, 19,

2682.

- [2] H.-S. Chuang, S. Wereley, J. Micromech. Microeng. 2009, 19, 045010.
- [3] J. Ruhhammer, M. Zens, F. Goldschmidtboeing, A. Seifert, P. Woias, Sci. Technol. Adv. Mater. 2015, 16, 015003.
- [4] A. Larmagnac, S. Eggenberger, H. Janossy, J. Voros, *Sci. Rep.* 2014, 4, 7254.
- [5] H. Cong, T. Pan, Adv. Funct. Mater. 2008, 18, 1912.
- [6] S. Merilampi, T. Laine-Ma, P. Ruuskanen, *Microelectron. Reliab.* 2009, **49**, 782.
- [7] H.-Y. Chen, H.-P. Shen, H.-C. Wu, M.-S. Wang, C.-F. Lee, W.-Y. Chiu, W.-C.
 Chen, J. Mater. Chem. C 2015, 3, 3318.
- [8] N. Matsuhisa, M. Kaltenbrunner, T. Yokota, H. Jinno, K. Kuribara, T. Sekitani,
 T. Someya, *Nat. Commun.* 2015, 6, 7461.
- [9] Y. Hu, T. Zhao, P. Zhu, Y. Zhang, X. Liang, R. Sun, C.-P. Wong, *Nano Res.* 2018, 11, 1938.
- [10] S. Duan, Z. Wang, L. Zhang, J. Liu, C. Li, ACS Appl. Mater. Interfaces 2017, 9, 30772.
- [11] K. H. Kim, M. Vural, M. F. Islam, *Adv. Mater.* 2011, 23, 2865.
- [12] X. Liao, Z. Zhang, Q. Liang, Q. Liao, Y. Zhang, ACS Appl. Mater. Interfaces 2017, 9, 4151.
- [13] Q. Li, J. Li, D. Tran, C. Luo, Y. Gao, C. Yu, F. Xuan, J. Mater. Chem. C 2017,
 5, 11092.
- [14] M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, ACS Nano 2014, 8, 5154.
- [15] J.-H. Kong, N.-S. Jang, S.-H. Kim, J.-M. Kim, *Carbon* 2014, 77, 199.

- [16] I. Kim, K. Woo, Z. Zhong, P. Ko, Y. Jang, M. Jung, J. Jo, S. Kwon, S. H. Lee,
 S. Lee, H. Youn, J. Moon, *Nanoscale* 2018, 10, 7890.
- [17] X. Fang, J. Tan, Y. Gao, Y. Lu, F. Xuan, *Nanoscale* 2017, 9, 17948.
- [18] C. Yan, J. Wang, W. Kang, M. Cui, X. Wang, C. Y. Foo, K. J. Chee, P. S. Lee, *Adv. Mater.* 2014, 26, 2022.
- [19] Y. Cheng, R. Wang, J. Sun, L. Gao, Adv. Mater. 2015, 27, 7365.
- [20] M. Zhang, C. Wang, H. Wang, M. Jian, X. Hao, Y. Zhang, *Adv. Funct. Mater.* 2017, 27, 1604795.
- [21] J. J. Park, W. J. Hyun, S. C. Mun, Y. T. Park, O. O. Park, ACS Appl. Mater. Interfaces 2015, 7, 6317.
- [22] K. H. Kim, N. S. Jang, S. H. Ha, J. H. Cho, J. M. Kim, *Small* 2018, 14, e1704232.
- [23] Z. Liu, D. Qi, P. Guo, Y. Liu, B. Zhu, H. Yang, Y. Liu, B. Li, C. Zhang, J. Yu,
 B. Liedberg, X. Chen, *Adv. Mater.* 2015, 27, 6230.
- [24] S. G. Yoon, H. J. Koo, S. T. Chang, ACS Appl. Mater. Interfaces 2015, 7, 27562.
- [25] C. S. Boland, U. Khan, H. Benameur, J. N. Coleman, *Nanoscale* 2017, 9, 18507.
- [26] M. Xu, J. Qi, F. Li, Y. Zhang, *Nanoscale* 2018, **10**, 5264.