A solvent-free and vacuum-free melt-processing method to fabricate organic semiconducting layers with large crystal size for organic electronic applications

Jean-Charles Ribierre ^{ab*}, Li Zhao,^a Xiao Liu,^{cd} Emmanuelle Lacaze,^d Benoît Heinrich,^e Stephane Méry,^e Piotr Sleczkowski,^f Yiming Xiao,^f Frédéric Lafolet,^{gh} Daisuke Hashizume,ⁱ Tetsuya Aoyama,^j Masanobu Uchiyama,^{jk} Jeong Weon Wu,^{fl} Elena Zaborova,^m Frederic Fages,^m Anthony D'Aléo,^{fmn*} Fabrice Mathevet^{ac*} and Chihaya Adachi ^{abo*}

^a Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan

^b Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project,

c/o Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan

° Sorbonne Universités, Faculté des Sciences, CNRS, Institut Parisien de Chimie Moléculaire (IPCM),

UMR 8232, Chimie des Polymères, 4 Place Jussieu, 75005 Paris, France

^d Sorbonne Universités, Faculté des Sciences, CNRS, Institut des NanoSciences de Paris (INSP), UMR

7588, 4 Place Jussieu, 75252 Paris Cedex 05, France

^e Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS-Université de Strasbourg, 23 Rue du Loess, 67034 Strasbourg Cedex 2, France

^fDepartment of Physics, Ewha Womans University, Seoul 03760, South Korea

^g Univ. Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France

^h Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue Jean-Antoine de Baïf,
 75205 Paris Cedex 13, France

ⁱ RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Japan

^j Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Japan

^k Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

¹ Building Blocks for Future Electronics Laboratory (2-B FUEL), The joint CNRS-Ewha-Yonsei Laboratory, UMI 2002, Seoul, Republic of Korea

^m Aix Marseille Univ, CNRS, CINaM UMR 7325, Campus de Luminy, Case 913, 13288 Marseille, France ⁿ International Institute for Carbon Neutral Energy Research (WPII2CNER), Kyushu University 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

Single crystal structure of bis-styryl-pyren.

X-ray quality single-crystals of bis-styryl-pyren were grown by slow evaporation of dichloromethane in a mixture of dichloromethane/methanol. A single crystal was mounted on a glass fiber and diffraction data were acquired using a Mo K α radiation source ($\lambda = 0.71073$ Å). Detailed crystallographic parameters are included in **Table S1**. This dye crystallizes in a monoclinic crystal system (C2/c, Z = 4). The molecule is non-planar with a tilt of the pyrene units of 35.57° compared to the central phenyl unit (see below and animation of structure in **Supporting Information**).

Compound	
Formula	C58 H58 O2
Molecular weight (g mol ⁻¹)	787.04
Size (mm)	0.3 x 0.24 x 0.06
Crystal lattice	monoclinic
Space group	C2/c
a [Å]	25.0499(5)
b [Å]	8.3917(2)
c [Å]	23.4363(6)
β	116.997(2)
V [Å ³]	4389.73(19)
ρ_{calcd} (g cm ⁻³)	1.191
Ζ	4
$\lambda(Mo/K\alpha) / Å$	0.71073
T/K	293(2)
θ range / deg	1.825-27.483
	0 < h < 32
hkl ranges	0< k < 10
	-30<1<26
Variable	289
Refln measured	34085
Refln $I > 2\sigma(I)$	4995
R1 $I > 2\sigma(I)$	0.057
R1 all data	0.1241
$w \text{R2 } I > 2\sigma(I)$	0.1585
wR2 all data	0.1977
Δho (+/-) / e. Å ⁻³	0.473 / -0.396

Table S1. Crystal structure data for single crystal of bis-styryl-pyren prepared by slow solvent evaporation.

a) Picture of a transistor prepared with a melt-processed thin film of bis-styryl-pyren. b) AFM image of the transistor channel area surrounded by the red square in a), and height profiles along the red, black and blue lines showing the typical melt-processed thin film thickness and the crack depth.

SAXS pattern of bis-styryl-pyren pristine powder and simulated SAXS pattern calculated from crystal structure resolved from single-crystals prepared by slow solvent evaporation.

SAXS patterns of bis-styryl-pyren at Room Temperature in the pristine powder state (black), after annealing at 100°C (blue) and after melting in the isotropic liquid phase and cooling (red).

SAXS patterns of bis-styryl-pyren powder at 100°C (sky blue) and at Room Temperature after the annealing at 100°C (blue).

Cyclovoltamogram of a 1M solution of bis-styryl-pyren in THF using TBAPF6 as the supporting electrolyte and a vitreous carbon working electrodes at a rate of 50 mV.s⁻¹.

Square root of the s/d current versus the gate voltage in as-prepared, annealed, and melted OFETs.

Summary of the OFET properties measured in the as-prepared device. These data show the excellent repeatability of the device performance.

Gate voltage dependence of the hole mobility in representative as-prepared, annealed and melted OFETs. These data indicate that the influence of the contact resistance of the samples on the field-effect mobility determined in the saturation regime is negligible.