Electronic Supplementary Information (ESI)

Materials and Instruments

All the chemicals and reagents were purchased from commercial sources and used as received without further purification. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Bruker AV 500 spectrometer in CDCl_{3} at room temperature. High resolution mass spectra (HRMS) were recorded on a GCT premier CAB048 mass spectrometer operating in MALDI-TOF mode. Single crystals of CC6-DBP-PXZ were grown in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-methanol mixtures and single crystal X-ray diffraction intensity data were collected at 173 K on a Bruker-Nonices Smart Apex CCD diffractometer with graphite monochromated $\mathrm{MoK} \alpha$ radiation. Processing of the intensity data was carried out using the SAINT and SADABS routines, and the structure and refinement were conducted using the SHELTL suite of X-ray programs (version 6.10). UV-vis absorption spectra were measured on a Shimadzu UV-2600 spectrophotometer. PL spectra were recorded on a Horiba Fluoromax-4 spectrofluorometer. PL quantum yields were measured using a Hamamatsu absolute PL quantum yield spectrometer C11347 Quantaurus_QY. The ground-state geometries were optimized using the density function theory (DFT) method with BMK hybrid functional at the basis set level of $6-31 \mathrm{G}^{*}$, and then the ΔE_{ST} values were calculated by timedependent DFT (TDDFT) method at the same level. All the calculations were performed using Gaussian09 package.

Additional Spectra

Fig. S1 (A) TGA and (B) DSC thermograms of CC6-DBP-PXZ and CC6-DBP-DMAC, measured under nitrogen at a heating rate of 20 and $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$, respectively.

Fig. S2 Fluorescence and phosphorescence spectra of (A) CC6-DBP-PXZ neat film, (B) CC6-DBPDMAC neat film, (C) $30 \mathrm{wt} \%$ CC6-DBP-PXZ:CBP doped film and (D) $30 \mathrm{wt} \%$ CC6-DBP-DMAC:CBP doped film.

Estimation of Basic Photophysical Data

The quantum efficiencies and rate constants were determined using the following equations according to the following equations:

$$
\begin{align*}
& \Phi_{\text {prompt }}=\Phi_{\mathrm{F}} R_{\mathrm{prompt}} \tag{1}\\
& \Phi_{\text {delayed }}=\Phi_{\mathrm{F}} R_{\text {delayed }} \tag{2}\\
& k_{\mathrm{F}}=\Phi_{\mathrm{prompt}} / \tau_{\mathrm{prompt}} \tag{3}\\
& \Phi_{\mathrm{F}}=k_{\mathrm{F}} /\left(k_{\mathrm{F}}+k_{\mathrm{IC}}\right) \tag{4}\\
& \Phi_{\mathrm{prompt}}=k_{\mathrm{F}} /\left(k_{\mathrm{F}}+k_{\mathrm{IC}}+k_{\mathrm{ISC}}\right) \tag{5}\\
& \Phi_{\mathrm{IC}}=k_{\mathrm{IC}} /\left(k_{\mathrm{F}}+k_{\mathrm{IC}}+k_{\mathrm{ISC}}\right) \tag{6}\\
& \Phi_{\mathrm{ISC}}=k_{\mathrm{ISC}} /\left(k_{\mathrm{F}}+k_{\mathrm{IC}}+k_{\mathrm{ISC}}\right)=1-\Phi_{\mathrm{prompt}}-\Phi_{\mathrm{IC}} \tag{7}\\
& \Phi_{\mathrm{RISC}}=\Phi_{\text {delayed }} / \Phi_{\mathrm{ISC}} \tag{8}\\
& k_{\mathrm{RISC}}=\left(k_{\mathrm{p}} k_{\mathrm{d}} \Phi_{\text {delayed }}\right) /\left(k_{\mathrm{ISC}} \Phi_{\mathrm{prompt}}\right) \tag{9}\\
& k_{\mathrm{p}}=1 / \tau_{\mathrm{prompt}} ; k_{\mathrm{d}}=1 / \tau_{\text {delayed }} \tag{10}
\end{align*}
$$

Table S1. Transient PL decay data of THF solutions and neat films of CC6-DBP-PXZ and CC6-DBP-
DMAC at 300 K under nitrogen. ${ }^{\text {a }}$

compound	state	$<\tau>(\mathrm{ns})$	$\tau_{1}(\mathrm{~ns})$	$\tau_{2}(\mathrm{~ns})$	A_{1}	$\mathrm{~A}_{2}$	$R_{\text {prompt }}(\%)$	$R_{\text {delayed }}(\%)$
	THF solution	2.0	1.9	28.6	61783	15.048	~ 100	~ 0
PXZ	neat film	244.9	22.9	1212.8	40350.8	175.0	81	19
CC6-DBP-	THF solution	60.7	19.7	217.2	6505.02	154.58	79	21
DMAC	neat film	1294.8	25.7	2882.1	31778	226.3	56	44

${ }^{\text {a }}$ The transient PL decay data were fitted by multiple-exponential function and the mean fluorescence lifetimes ($\left\langle\tau>\right.$) were calculated by $\langle\tau\rangle=\Sigma \mathrm{A}_{\mathrm{i}} \tau_{\mathrm{i}}^{2} / \Sigma \mathrm{A}_{\mathrm{i}} \tau_{\mathrm{i}}$, where A_{i} is the pre-exponential for lifetime τ_{i}. $R_{\text {prompt }}$ and $R_{\text {delayed }}$ are individual component ratio for prompt and delayed fluorescence. $R_{\text {prompt }}=$ $\tau_{1} \mathrm{~A}_{1} /\left(\tau_{1} \mathrm{~A}_{1}+\tau_{2} \mathrm{~A}_{2}+\tau_{3} \mathrm{~A}_{3}\right), R_{\text {delayed }}=1-R_{\text {prompt. }}$.

Table S2. Photophysical data of neat films and doped films in CBP ($30 \mathrm{wt} \%$) of CC6-BP-PXZ and CC6-
BP-DMAC. ${ }^{\text {a }}$

	CC6-DBP-PXZ		CC6-DBP-DMAC	
	neat film	$30 \mathrm{wt} \%$ in CBP	neat film	$30 \mathrm{wt} \%$ in CBP
$\Phi_{\mathrm{F}}(\%)$	38.3	59.0	59.5	69.1
$\tau_{\text {prompt }}(\mathrm{ns})$	22.9	24.5	25.7	29.4
$\tau_{\text {delayed }}(\mu \mathrm{s})$	1.2	1.6	2.9	6.4
$R_{\text {delayed }}(\%)$	19.0	28.6	44.0	43.4
$\Phi_{\text {prompt }}(\%)$	31.0	37.8	33.3	39.1
$\Phi_{\text {delayed (\%) }}$	7.3	15.2	26.2	30.0
$\Phi_{\text {ISC }}(\%)$	19.0	28.6	44.0	43.4
$\Phi_{\text {RISC (\%) }}$	38.4	53.0	59.5	69.1
$k_{\mathrm{F}}\left(\times 10^{6} \mathrm{~s}^{-1}\right)$	13.5	15.4	13.0	13.3
$k_{\text {IC }}\left(\times 10^{6} \mathrm{~s}^{-1}\right)$	21.8	13.7	8.8	5.9
$k_{\text {ISC }}\left(\times 10^{6} \mathrm{~s}^{-1}\right)$	8.3	11.7	17.1	14.7
$k_{\text {RISC }}\left(\times 10^{6} \mathrm{~s}^{-1}\right)$	3.2	3.3	2.1	1.1

${ }^{\text {a }}$ Abbreviations: $\Phi_{\mathrm{PL}}=$ absolute photoluminescence quantum yield; $\tau_{\text {prompt }}$ and $\tau_{\text {delayed }}=$ lifetimes calculated from the prompt and delayed fluorescence decay, respectively; $R_{\text {delayed }}=$ the ratio of delayed components; $\Phi_{\text {prompt }}$ and $\Phi_{\text {delayed }}=$ fluorescent and delayed components, respectively, determined from the total Φ_{PL} and the proportion of the integrated area of each of the components in the transient spectra to the total integrated area; $\Phi_{\mathrm{ISC}}=$ the intersystem crossing quantum yield; $K_{\mathrm{F}}=$ fluorescence decay rate; $K_{\mathrm{IC}}=$ internal conversion decay rate from S_{1} to $\mathrm{S}_{0} ; K_{\mathrm{ISC}}=$ intersystem crossing decay rate from S_{1} to T_{1}; $K_{\text {RISC }}=$ the rate constant of reverse intersystem crossing process.

Table S3. The theoretically calculated maximum $\eta_{\text {ext }}$ values for nondoped OLEDs of CC6-DBP-PXZ and CC6-DBP-
DMAC.

	$\Phi_{\text {prompt }}(\%)$	$\Phi_{\text {ISC (\%) }}$	$\Phi_{\text {RISC (\%) }}$	$\eta_{\text {ext }}{ }^{\mathrm{a}}(\%)$	$\eta_{\text {ext }}{ }^{\mathrm{b}}$ (\%)
CC6-DBP-PXZ	31.0	19.0	38.4	$7.7-11.5$	7.73
CC6-DBP-DMAC	33.3	44.0	59.5	$12.8-19.2$	9.02

${ }^{\text {a }}$ Theoretical maximum $\eta_{\text {ext }}$ values, calculated according to the following equations (1) and (2):
$\eta_{\text {ext }}=\eta_{\text {int }} \times \eta_{\text {out }}$
$\eta_{\text {int }}=\gamma \times\left[\eta_{\mathrm{S}} \times \Phi_{\text {prompt }}+\left(\eta_{\mathrm{S}} \times \Phi_{\mathrm{ISC}}+\eta_{\mathrm{T}}\right) \times \Phi_{\mathrm{RISC}}\right]$
where $\eta_{\text {int }}$ denotes the internal quantum efficiency, $\eta_{\text {out }}$ is the optical out-coupling factor (typically $0.2 \sim 0.3$), γ is the charge balance factor (ideally $\gamma=1.0$), and η_{S} and η_{T} are the fractions of singlet and triplet excitons (25% and 75%, respectively).
${ }^{\mathrm{b}}$ Experimental maximum $\eta_{\text {ext }}$ values.

