

Journal Name

ARTICLE

Supplementary information

1

2 The Flexible Pressure Sensor based on MXene-Textile Network Structure

3 Tongkuai Li, Longlong Chen, Xiang Yang, Xin Chen, Zhihan Zhang, Tingting Zhao, Xifeng Li, Jianhua Zhang*

4

- 5 ¹Tongkuai Li and Longlong Chen contributed equally
- 6

- 7
- 8 Fig. S1. The MXene uniformly adhered to each individual cotton textile fiber. (scale bar, 1 μ m). (b) Mxene (scale bar, 200 9 nm).
- 10
- 11

Fig. S2. The $\Delta I/I0$ profiles after repeating 6,500 cycles shows a degradation by 20%

12 13 14

15

16 Fig. S3. Real-time monitoring of current changes upon wrist pulses before and after exercise, showing that the tester's pulse rate

17 was 72 times/min and 90 times/min, respectively.

Fig. S4. The statistical sensitivity graph of our pressure sensor. (a) in the pressure region under 29 kPa, (b) in thepressure region of 29–40 kPa.

21

18

22

Table S1 Performance summary of representative flexible pressure sensors

Materials/Structures	Device type	Sensitivity	Response time	References
Gaussian random distribution contact surface profile	Piezoresistive	0 - 14 kPa, 13.8 kPa ⁻¹	23 ms	1
CNT-cotton textile	Piezoresistive	<3.5kPa, 14.4 kPa ⁻¹ 3.5 – 15 kPa, 7.8 kPa ⁻¹	≈24 ms	2
archical Gr/PDMS	Piezoresistive	0 - 12 kPa, 8.5 kPa ⁻¹	≈40 ms	3
Replication from banana leaf	Piezoresistive	<400 Pa, 10 kPa ⁻¹ 400 – 1000 Pa, 4.3 kPa ⁻¹	response time 36 ms relaxation time 30 ms	4
SWNT/tissue paper	Piezoresistive	35–2500 Pa, 2.2 kPa ⁻¹ 2500 –11 700 Pa, 1.3 kPa ⁻¹	35 ms	5
Graphene-silk network structure	Piezoresistive	<140kPa, 0.4 kPa ⁻¹	-	6
MXene-Textile Network	Piezoresistive	<29 kPa, 3.844 kPa ⁻¹ 29–40 kPa, 12.095 kPa ⁻¹	response time ≈26 ms recovery times ≈50 ms	This work

References

- 1. Y. Shu, H. Tian, Y. Yang, C. Li, Y. Cui, W. Mi, Y. Li, Z. Wang, N. Deng and B. Peng, *Nanoscale*, 2015, 7, 8636.
- 2. M. Liu, X. Pu, C. Jiang, T. Liu, X. Huang, L. Chen, C. Du, J. Sun, W. Hu and Z. L. Wang, *Adv Mater*, 2017, **29**, 1703700.
- 3. G. Y. Bae, S. W. Pak, D. Kim, G. Lee, D. H. Kim, Y. Chung and K. Cho, *Adv Mater*, 2016, **28**, 5300.
- 4. N. Pu, R. Wang, X. Xu, C. Yin, W. Xiao, L. Shi and S. Jing, Acs Appl Mater Interfaces, 2017, 9, 14911-14919.
- 5. Z. Zhan, R. Lin, V. T. Tran, J. An, Y. Wei, H. Du, T. Tran and W. Lu, *Acs Appl Mater Interfaces*, 2017, 9, 37921-37928.
- 6. Y. Liu, L. Q. Tao, D. Y. Wang, T. Y. Zhang, Y. Yang and T. L. Ren, *Appl Phys Lett*, 2017, **110**, 123508.

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 20xx