Supplementary Materials

2H→1T' Phase Transformation in Janus Monolayer MoSSe and MoSTe: an Efficient Hole Injection Contact for 2H-MoS₂

Zhiguo Wang*

School of Electronics Science and Engineering, Center for Public Security Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China *Corresponding author. E-mail: zgwang@uestc.edu.cn

Figure S1 A 2×1 rectangular supercell used for calculation of elastic constants and in-plane stiffness, a_x and a_y are the lattice constants of the unit cell in *x*- and *y*-directions, respectively. The elastic strain directions of ε_x and ε_y are indicated by red arrow. Bottom shows the three-dimensional fitted surface plots of strain energy versus elastic strain for the 2H- and 1T'-MoSX monolayer.

Figure S2 The band structures of 2H- and 1T'-MoS₂, which are orbitally resolved into dxy, dxz, dyz, dz^2 , dx^2 - y^2 , and S *p* orbitals.

Figure S3 The band structures of 2H- and 1T'-MoSTe, which are orbitally resolved into dxy, dxz, dyz, dz^2 , dx^2 - y^2 , S *p* and Te *p* orbitals.

Figure S1 A 2×1 rectangular supercell used for calculation of elastic constants and in-plane stiffness, a_x and a_y are the lattice constants of the unit cell in *x*- and *y*-directions, respectively. The elastic strain directions of ε_x and ε_y are indicated by red arrow. Bottom shows the three-dimensional fitted surface plots of strain energy versus elastic strain for the 2H- and 1T'-MoSX monolayer.

Figure S2 The band structures of 2H- and 1T'-MoS₂, which are orbitally resolved into dxy, dxz, dyz, dz^2 , dx^2 - y^2 , and S p orbitals.

Figure S3 The band structures of 2H- and 1T'-MoSTe, which are orbitally resolved into dxy, dxz, dyz, dz^2 , dx^2 - y^2 , S p and Te p orbitals.