Supporting Information

Crystal Facet Engineering Induced Anisotropic Transport of Charge Carriers in a Perovskite

Hewei Yang,^{ab} Yunzhan Zhou,^c Yijun Yang,^c Ding Yi,^{*d} Tao Ye,^{*c} Tran Dai Lam,^e Dmitri Golberg,^{fg} Bate Bao,^h Jiannian Yao,^{abi} and Xi Wang,^{*abc}

^aSchool of Chemical Engineering and Technology, Institute of Molecular Plus, Tianjin Key Laboratory of

Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University; Tianjin, 300072, P. R.

China.

^bCollaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R.

China

^cKey Laboratory of Luminescence and Optical Information, Ministry of Education, Department of Physics, School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China.

^dCenter for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea

^eGraduate University of Science and Technology, High Technology Development Center, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nahia Do, Cau Giay, Ha Noi, Viet Nam.

^fInternational Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan

^gScience and Engineering Faculty, Queensland University of Technology (QUT), 2 George St., Brisbane, QLD 4000, Australia

^hDaqing Oilfield Qing Sheng Industrial Company, East of Donghuan Road, Donghu District, Daqing, 163416,

P.R. China

ⁱKey Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China

Fig. S1 The low-magnification optical images of the as-prepared $CH_3NH_3PbBr_3$ rods.

Fig. S2 The low-magnification optical images of the as-prepared CH₃NH₃PbBr₃ plates.

Fig. S3 Tauc plots of the absorption spectra of $CH_3NH_3PbBr_3$ single plates and single rods showing the material optical band gaps.

Fig. S4 Time-dependent photocurrent response of $CH_3NH_3PbBr_3$ single plate and single rod devices (rise time $t_1 << t_2$).

Fig. S5 The FTIR spectrum of the $CH_3NH_3PbBr_3$ plates. No ~722 cm⁻¹ peak of the surfactants in the spectrum.^{1,2}

Fig. S6 The FTIR spectrum of the $CH_3NH_3PbBr_3$ rods. No ~722 cm⁻¹ peak of the surfactants in the spectrum.^{1,2}

Fig. S7 I-V curves of a $CH_3NH_3PbBr_3$ single plate device illuminated with a light of different wavelengths (above 500 nm).

Fig. S8 Logarithmic current vs voltage of a $CH_3NH_3PbBr_3$ single plate device illuminated with a light of different wavelengths (above 500 nm).

Fig. S9 *In situ* taken diffraction pattern of an individual CH₃NH₃PbBr₃ single rod under dark condition.

Fig. S10 *In situ* taken diffraction pattern of an individual $CH_3NH_3PbBr_3$ single rod under 405 nm light illumination.

Table S1. The PL lifetimes extracted from the original TRPL spectra of single plate and single rod samples.

	Single plate	Single rod
A1	3675.37	32497.0
τ ₁ (ns)	0.628	0.55
A ₂	1256.91	9902.72
τ ₂ (ns)	3.531	2.605
A ₃	294.89	1796.75
τ ₃ (ns)	29.903	12.932
Backgr	65.33	60.75
χ ²	1.094	1.339
τ _{Αν} (ns)	18.04	5.64

Notes and References:

1 A. Kisner, S. Lenk, D. Mayer, Y. Mourzina, A. Offenhäusser, J. Phys. Chem. C, 2009, 113, 20143-

20147.

2 J. Xu, S. Zhao, Y. Ji, Y. F. Song, *Chem.–Eur. J.*, **2013**, *19*, 709-715.