Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

High Thermoelectric Performance of Ba₃Cu_{16-x}(S,Te)₁₁

Parisa Jafarzadeh, Mohamed Oudah, Abdeljalil Assoud, Nader Farahi, Eckhard Müller and Holger Kleinke*

Supplementary Information

Fig. S1. Experimental X-ray patterns. The calculated pattern is from the single crystal data of $Ba_3Cu_{15.09}S_{7.9}Te_{3.09}$.

Fig. S2. Stability of the electrical transport properties of Ba₃Cu_{15.1}S₈Te₃.

Fig. S3. Reproducibility of the electrical transport properties of two different samples of Ba₃Cu_{15.3}S_{7.5}Te_{3.5}. UW: measured at the University of Waterloo; DLR: measured at the German Aerospace Center.

Fig. S4. X-ray pattern of Ba₃Cu_{15.1}S₈Te₃ after three consecutive electrical transport property measurements.

Fig. S5. EDX maps of $Ba_3Cu_{15.1}S_8Te_3$. Top left: secondary electron image; top right: Cu map; bottom left: S map; bottom right: Te map.

Fig. S6. DSC/TG of Ba₃Cu_{15.3}S_{7.5}Te_{3.5}.

Formula	$Ba_3Cu_{15.26(7)}S_{8.31(1)}Te_{2.69}{}^a$	$Ba_3Cu_{15.38(7)}S_{8.35(1)}Te_{2.65}{}^b$		
Formula Weight	1991.67	1994.36		
Crystal System	Rhombohedral	Rhombohedral		
Space group	<i>R</i> 3 <i>m</i> (no. 166)	<i>R</i> 3 <i>m</i> (no. 166)		
a, c [Å]	11.901(1), 27.433(2)	11.899(2), 27.449(4)		
V[Å ³]	3364.80(6)	3365.5(1)		
Ζ	6	6		
Density [g cm ⁻³]	5.90	5.90		
Absorption coefficient [mm ⁻¹]	23.49	23.53		
F(000)	5301	5311		
Crystal size [mm]	$0.01 \times 0.02 \times 0.04$	$0.01 \times 0.02 \times 0.04$		
Temperature [K]	296(2)	296(2)		
Radiation [Å]	0.71073	0.71073		
Total, unique data, R(int)	7819, 1243, 0.026	6505, 1246, 0.038		
Observed data $[I > 2\sigma(I)]$	1104	1016		
$R(F_o)$, ^c $R_w(F_o^2)$, ^d GOF (obs.	0.037, 0.085, 1.04	0.038, 0.085, 1.04		
Data)				
Min., max. residual electron	-2.3, 4.48	-2.29, 4.26		
density [e Å ⁻³]				

^{*a*} before hot pressing;

^{*b*} after the electrical property measurements;

^{*c*} $R(F_{o}) = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|;$

 $^{d}R_{w}(F_{o}^{2}) = \left[\Sigma[w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma[w(F_{o}^{2})^{2}]\right]^{1/2}$, with F_{o} and F_{c} being the observed and calculated structure factors,

respectively.

Table S2. Fractional atomic coordinates, equivalent isotropic displacement parameters and occupancies of Ba₃Cu_{15.1}S_{8.5}Te_{2.5}.

	x ^a	y ^a	z ^a	$U_{eq}/{ m \AA^{2}a}$	$U_{\it eq}/{ m \AA^{2\ b}}$	occ. ^a	occ. ^b
Ba1	0.47177(3)	0.52823(3)	0.08655(2)	0.0161(2)	0.0165(2)	1	1
Cu1	0.2325(2)	0.0134(1)	0.13515(6)	0.0391(6)	0.0414(7)	0.816(6)	0.816(7)
Cu1B	0.137(1)	-0.0175(9)	0.1503(3)	0.046(4)	0.041(4)	0.138(6)	0.135(6)
Cu2	0.4237(1)	0.5762(1)	0.35185(9)	0.0586(9)	0.060(1)	0.945(9)	0.968(9)
Cu3	0.52396(8)	0.47604(8)	0.28215(5)	0.0243(5)	0.0248(5)	0.996(7)	0.991(8)
Cu4	0.54640(9)	0.45360(9)	0.37995(6)	0.0339(6)	0.0348(7)	0.961(8)	0.970(8)
Cu5	0	0	0.1688(2)	0.042(2)	0.045(2)	0.63(2)	0.66(2)
Cu6	1/3	2/3	0.4340(6)	0.033(5)	0.035(5)	0.20(1)	0.23(1)
<i>Q</i> 1(S, Te)	0.77521(4)	0.22479(4)	0.11060(3)	0.0124(3)	0.0129(3)	0.435(6), 0.565(6)	0.451(6), 0.549(6)
S3	0.3197(2)	0	0	0.0135(4)	0.0144(5)	1	1
S4	0	0	0.3595(2)	0.0162(8)	0.0172(9)	1	1
S5	0.4781(1)	0.5219(1)	0.20550(8)	0.0170(5)	0.0180(5)	1	1
Te2	0	0	0.07669(4)	0.0168(2)	0.0170(3)	1	1

^{*a*} before hot pressing;

^b after the electrical property measurements.