Electronic supplementary information for

Molecular ferroelectrics induced electroactive $\boldsymbol{\beta}$-phase in solution processed PVDF films for flexible piezoelectric
 sensors

Qingqing Li, a,b,c Wanyu Ke, ${ }^{a, b}$ Tongxin Chang, ${ }^{a, b}$ Zhijun Hu ${ }^{* a, b, c}$

${ }^{a}$ School of Optoelectronics Science and Engineering \& Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
${ }^{b}$ Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province \& Key lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
${ }^{\text {c Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215123, China }}$

Figure S1. (a) (c) FT-IR spectra of the dabcoHReO 4 and the dabcoHReO 4 -PVDF composite film ($15 \mathrm{wt} \%$). (b) (d) XRD patterns of the dabcoHReO 4 (at $70^{\circ} \mathrm{C}$) and the dabcoHReO ${ }_{4}$-PVDF composite film ($15 \mathrm{wt} \%$)

Figure S2. FT-IR spectra of the pure PVDF film and the dabcoHReO 4 -PVDF composite films with different DH loadings in the region of 2800-3200 cm^{-1}.

Figure S3. (a) SEM image of the dabcoHReO 4 -PVDF composite film ($2 \mathrm{wt} \%$) at 300 nm scale. (b) POM image of the dabcoHReO ${ }_{4}$-PVDF composite film ($2 \mathrm{wt} \%$) at $50 \mu \mathrm{~m}$ scale. (c) SEM image of the dabcoHReO ${ }_{4}$-PVDF composite film ($6 \mathrm{wt} \%$) at 300 nm scale. (d) POM image of the dabcoHReO ${ }_{4}$-PVDF composite film ($6 \mathrm{wt} \%$) at $50 \mu \mathrm{~m}$ scale.

Figure S4. The simple experimental schematic illustration of measuring piezoelectric sensors under the periodical mechanical force.

Figure S5. The linear fitting of experiment data (the relationship between the average output voltage and the applied force under a given frequency of 8 Hz).

