Supplementary Information

Cross-plane thermoelectric Seebeck coefficients in nanoscale Al₂O₃/ZnO superlattice films

Yo-Seop Yoon^{a,⊥}, Won-Yong Lee^{a,⊥}, No-Won Park^a, Gil-Sung Kim^a, Rafael Ramos^{b,c}, Takashi Kikkawa^{b,c}, Eiji Saitoh^{b,c,d}, Sang-Mo Koo^e, Jin-Seong Park^f, and Sang-Kwon Lee^{a,*}

^a Department of Physics, Chung-Ang University, Seoul 06974, Republic of Korea

^b Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

° WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

- ^d Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
- ^e Department of Electronic Materials Engineering, Kwangwoon University, Seoul 10897, Republic of Korea

^fDivision of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea

*Address correspondence to sangkwonlee@cau.ac.kr

[⊥]These authors contributed equally to this work

Figure S1 Un- and compensated cross-plane Seebeck coefficients of the films. Uncompensated and compensated cross-plane Seebeck coefficients of the 6-cycled AO/ZnO superlattice films as a function of the temperature difference from 1 to 5 K. All measurements were performed in a vacuum chamber at room temperature. The thickness of the samples was 100 nm. The measured Seebeck coefficients of 100 nm-thick 6-cycled AO/ZnO superlattice film was determined to be ~ 11.4 – 11.8 μ V/K with a temperature difference which ranged from 1 to 5 K.

Figure S2 Temperature dependent cross-plane Seebeck coefficient of the films. Crossplane Seebeck coefficient of 6-cycled AO/ZnO superlattice films as a function of temperature, ranging from 100 to 300 K. All measurements were performed in a vacuum chamber. The thickness of the samples was 100 nm.