Supplementary Materials for "Prediction of new ZnS-CaS alloys with anomalous electronic properties"

Jie Gao,¹ Yifeng Duan,^{1, a)} Changming Zhao,¹ Wenjie Liu,¹ Haiming Dong,^{1, b)} Dekun Zhang,^{2, c)} and Huafeng Dong^{3, d)}

¹⁾School of Physics, China University of Mining and Technology, Xuzhou 221116, China.

²⁾School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, 221116, China

³⁾School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, 510006, China.

(Dated: 9 January 2019)

^{a)}Electronic mail: yifeng@cumt.edu.cn

^{b)}Electronic mail: hmdong@cumt.edu.cn

^{c)}Electronic mail: dkzhang@cumt.edu.cn

^{d)}Electronic mail: hfdong@gdut.edu.cn

TABLE S1. Bulk modulus B (GPa), shear modulus G (GPa), Young's modulus E (GPa), Poisson's ratio v and Vickers hardness H_v (GPa) for possible ZnS, CaS and ZnS-CaS alloys at ambient pressure.

Phase	В	G	Е	v	Hv	
ZB-ZnS	70	34	87	0.293	3.62	
RS-ZnS	86	46	117	0.274	5.95	
Cmcm-ZnS	87	46	118	0.274	5.98	
RS-CaS	56	40	96	0.216	8.33	
$Pm\bar{3}m$ -CaS	62	18	50	0.365	-0.35	
$I4/mcm-CaZnS_2$	60	32	82	0.273	4.30	
$R\bar{3}$ -Ca ₂ ZnS ₃	51	20	52	0.329	0.75	
$R\bar{3}$ -Ca ₇ Zn ₂ S ₉	40	18	48	0.303	1.34	

Fig. S1. Formation enthalpy of ZnS-CaS alloys with respect to decomposition into (a) ZnS and CaS, (b) $CaZnS_2$ and CaS, and (c) Ca_2ZnS_3 and CaS, where the stable phases with the lowest energy are chosen for special pressures.

Fig. S2. The phonon spectrums of predicted (a) I4/mcm-CaZnS₂, (b) $R\bar{3}$ -Ca₂ZnS₃ and (c) $R\bar{3}$ -Ca₇Zn₂S₉ at 0 GPa.

Fig. S3. The upper panels show the crystal structures of the predicted thermodynamically metastable ZnS-CaS alloys at special pressures, whose phonon spectrums are listed correspondingly in the bottom panels.

x = 1 and $x = 1$ and $x = 1$ and $x = 1$	P(GPa)
CaZn ₃ S ₄ $P\bar{4}21c$ a=b=5.62 Ca(2b) 0.00 0.00 0.50	70
c=6.02 $Zn(4d) = 0.00 = 0.50 = 0.04$	
$\alpha = \beta = \gamma = 90$ Zn(2a) 0.00 0.00 0.00	
S(8e) = 0.25 = 0.20 = 0.19	
CaZn ₂ S ₃ C2 a=8.45 Ca(4c) 1.00 0.26 0.67	50
b=5.85 $Ca(2b) = 0.00 = 0.28 = 0.50$	
c=17.38 $Ca(2a) = 0.00 = 0.82 = 0.00$	
$\alpha = \gamma = 90$ Zn(4c) 0.00 0.76 0.67	
$\beta = 133.49$ Zn(4c) 0.52 0.29 0.85	
Zn(4c) = 0.04 = 0.29 = 0.19	
Zn(2a) = 0.00 = 0.31 = 0.00	
Zn(2b) = 0.50 = 0.26 = 0.50	
S(4c) = 0.19 = 0.97 = 0.64	
S(4c) = 0.32 = 0.04 = 0.85	
S(4c) = 0.69 = 0.04 = 0.82	
S(4c) = 0.81 = 0.97 = 0.69	
S(4c) = 0.68 = 0.60 = 0.97	
S(4c) = 0.70 = 0.07 = 0.48	
$Ca_3Zn_2S_5$ $P\overline{1}$ $a=11.47$ $Ca(2i)$ 0.29 0.52 0.41	30
b= 5.32 Ca(2i) 0.52 0.77 0.25	
c=5.34 $Ca(2i)$ 0.09 0.85 0.14	
$\alpha = 107.80$ Zn(2i) 0.90 0.66 0.36	
$\beta = 99.34$ Zn(2i) 0.30 0.01 0.92	
$\gamma = 78.00$ S(2i) 0.31 0.00 0.34	
S(2i) = 0.07 = 0.38 = 0.22	
S(2i) = 0.88 = 0.08 = 0.33	
S(2i) = 0.53 = 0.26 = 0.25	
S(2i) 0.27 0.45 0.90	
$Ca_5Zn_3S_8$ Amm2 $a=8.95$ $Ca(8f)$ 0.26 0.75 0.57	30
b=8.82 $Ca(2a) = 0.00 = 0.50 = 0.55$	
c=6.11 $Zn(2a) = 0.00 = 0.00 = 0.55$	
$\alpha = \beta = \gamma = 90$ Zn(2b) 0.50 0.00 0.08	
m Zn(2b) = 0.50 = 0.00 = 0.57	
S(4c) = 0.69 = 0.00 = 0.83	
S(4c) = 0.21 = 0.00 = 0.33	
S(4d) = 0.00 = 0.21 = 0.76	
S(4e) = 0.50 = 0.81 = 0.32	
Ca ₃ ZnS ₄ $I\bar{4}3m$ a=b=c=6.27Ca(6b)0.500.000.00	30
$\alpha = \beta = \gamma = 90$ Zn(8c) 0.00 0.00 0.00	
S(2a) = 0.71 = 0.29 = 0.29	

TABLE S2. Structural parameters and atomic coordinates for metastable ZnS-CaS alloys at different pressures.

Phase	Elastic constant tensor C_{ij} (GPa)
$I4/mcm-CaZnS_2$	$ \begin{pmatrix} 99 & 56 & 17 & 0 & 0 & 0 \\ 99 & 17 & 0 & 0 & 0 \\ & 162 & 0 & 0 & 0 \\ & & 26 & 0 & 0 \\ & & & 26 & 0 \\ & & & & 31 \end{pmatrix} $
$Rar{3} ext{-} ext{Ca}_2 ext{ZnS}_3$	$ \begin{pmatrix} 72 & 42 & 32 & -3 & -6 & 0 \\ & 72 & 32 & 3 & 6 & 0 \\ & 97 & 0 & 0 & 0 \\ & & 23 & 0 & 6 \\ & & & & 23 & -3 \\ & & & & & 15 \end{pmatrix} $
$Rar{3} ext{-} ext{Ca}_7 ext{Zn}_2 ext{S}_9$	$ \begin{pmatrix} 68 & 39 & 21 & -5 & 2 & 0 \\ & 68 & 21 & 5 & -2 & 0 \\ & & 66 & 0 & 0 & 0 \\ & & & 21 & 0 & -2 \\ & & & & & 21 & -5 \\ & & & & & & 14 \end{pmatrix} $
$C2 ext{-} ext{CaZn}_2 ext{S}_3$	$ \begin{pmatrix} 43 & 24 & 28 & 0 & -15 & 0 \\ 91 & 36 & 0 & -4 & 0 \\ 88 & 0 & -22 & 0 \\ 9 & 0 & 4 \\ & & 33 & 0 \\ & & & & 8 \end{pmatrix} $
Amm2-Ca ₅ Zn ₃ S ₈	$ \begin{pmatrix} 92 & 45 & 7 & 0 & 0 & 0 \\ 82 & 23 & 0 & 0 & 0 \\ & 141 & 0 & 0 & 0 \\ & & 16 & 0 & 0 \\ & & & -15 & 0 \\ & & & & & 10 \end{pmatrix} $
$P\bar{1}$ -Ca $_3$ Zn $_2$ S $_5$	$ \begin{pmatrix} 83 & 31 & 31 & 3 & 9 & 1 \\ 86 & 44 & -5 & 9 & -2 \\ & 78 & 5 & -2 & -8 \\ & 30 & -20 & 17 \\ & & 17 & -7 \\ & & & 35 \end{pmatrix} $
$Par{4}21c ext{-CaZn}_3S_4$	$ \begin{pmatrix} 114 & 30 & 33 & 0 & 0 & 0 \\ & 114 & 33 & 0 & 0 & 0 \\ & 98 & 0 & 0 & 0 \\ & & -13 & 0 & 0 \\ & & & -13 & 0 \\ & & & & -2 \end{pmatrix} $
$Iar{4}3m ext{-} ext{Ca}_3 ext{ZnS}_4$	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE S3. Elastic constants tensors of predicted ZnS-CaS alloys.

Fig. S4. Full DOS of ZnS, CaS and their alloys at different pressures based on TB-mBJ functional. ZnS-CaS alloys: (a) I4/mcm-CaZnS₂ at 20 GPa, (b) $R\bar{3}$ -Ca₂ZnS₃ at 30 GPa, (c) $R\bar{3}$ -Ca₇Zn₂S₉ at 40 GPa; ZnS: (d) ZB at 0 GPa, (e) RS at 20 GPa, (f) Cmcm at 70 GPa; and CaS: (g) RS at 0 GPa, (h) $Pm\bar{3}m$ at 40 GPa, (i) $Pm\bar{3}m$ at 90 GPa. The VBM is set to zero in each panel.

Fig. S5. Band structures and DOS of ZnS-CaS alloys based on TB-mBJ functional.

Fig. S6. Projected DOS above the Fermi level of stable ZnS-CaS alloys based on TB-mBJ functional.