Supporting Information for

TIP₅: An unexplored direct band gap 2D semiconductor with ultrahigh carrier mobility

Jun-Hui Yuan,¹ Alessandro Cresti,² Kan-Hao Xue,^{1,2*} Ya-Qian Song,¹ Hai-Lei Su,¹ Li-

Heng Li,¹ Nai-Hua Miao,^{3#} Zhi-Mei Sun,³ Jia-Fu Wang,⁴ Xiang-Shui Miao¹

¹Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China

²Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, IMEP-LAHC, 38000 Grenoble, France

³School of Materials Science and Engineering, Beihang University, Beijing 100191, China

⁴School of Science, Wuhan University of Technology, Wuhan 430070, China

*Correspondence and requests for materials should be addressed to K.-H. Xue and N.-H. Miao (Email: <u>xkh@hust.edu.cn</u>; <u>nhmiao@buaa.edu.cn</u>)

First of all, we have checked the stability of bulk TlP₅ through the phonon dispersion calculation. The result in **Figure S1** shows only real modes, indicating good dynamic stability.

Figure S1 Calculated phonon dispersion relation of bulk TIP₅.

The phosphorus network founded in TlP₅ is very similar to the one observed in the monoclinic modification of red phosphorus, the so-called Hittorf's phosphorus.¹ As shown in **Figure S2**, in TlP₅ there are discernable tubes with pentagonal cross-sections, which are very characteristic structure of the phosphorus element in Hittorf's phosphorus. Comparing these two structures, one finds that the phosphorus network in TlP₅ can be regarded as stemming from a partial breaking of the network in Hittorf's phosphorus, as shown in **Figure S3**.

Figure S2 Demonstration of the crystal structures for: (a) bulk $(2 \times 3 \times 2 \text{ supercell})$ TlP₅; (b) bulk $(1 \times 2 \times 1 \text{ supercell})$ Hittorf's phosphorus; (c) monolayer $(2 \times 2 \times 1 \text{ supercell})$ TlP₅; and (d) monolayer $(2 \times 2 \times 1 \text{ supercell})$ Hittorf's phosphorus.

Figure S3 Comparison of the pentagonal tubes in the phosphorus network of (a) Hittorf's phosphorus and (b) TlP₅. Illustrations of the possible P-P bond breaking schemes are also given.

Figure S4 A schematic diagram of the P-P bonds and TI-P bonds in monolayer and bulk TIP₅. Only a single formula unit of TIP₅ has been marked.

The bond lengths of P-P and Tl-P in both monolayer and bulk TlP₅ are listed in Table S1, together with the experimental results for the sake of comparison. The P-P bond lengths of monolayer TlP₅ are around 2.16 Å ~2.27 Å, while those of Tl-P are around 3.0 Å ~3.17 Å. These values are very close to those of optimized bulk TlP₅ (2.15 Å~2.28 Å for P-P bonds and 3.00 Å~3.09 Å for Tl-P bonds). Most of the P-P and Tl-P bond lengths in monolayer TlP₅ are slightly larger than in the bulk, which is as expected.

Figure S5 Side view of the snapshots from the molecules dynamics simulation for the monolayer TlP₅. The variation of total energy was recorded during the simulation time of 5 ps, and the temperature was 300 K.

Table S1 The optimized P-P and Tl-P bond lengths in the monolayer TlP₅ ("1L" for short) and bulk, respectively, in comparison to the experimentally verified values (Exp.) for the bulk. The numbers in parentheses count the equivalent P-P bonds in a unit cell, and the corresponding bond locations are marked in **Figure S4**.

	1L TIP ₅	Bulk TlP ₅	Exp.	
	P-P (Å)	P-P (Å)	P-P (Å)	
P1(4)	2.243	2.242	2.242	
P2(4)	2.218	2.216	2.213	
P3(4)	2.27	2.275	2.229	
P4(4)	2.238	2.228	2.222	
P5(4)	2.227	2.218	2.225	
P6(2)	2.174	2.172	2.174	
P7(2)	2.157	2.15	2.126	
P8(4)	2.187	2.178	2.13	
P9(2)	2.203	2.198	2.221	
	P-TI(Å)	P-TI(Å)	P-TI(Å)	
TI1(4)	3.17	3.03	2.985	
TI2(4)	3.01	3.023	3.015	
TI3(2)	3.008	2.998	2.986	
TI4(2)	3.04	3.089	3.025	

Figure S6 *Ab initio* molecules dynamics simulation for H_2 on monolayer TlP₅. The optimized (a) top view and (b) side view of sixteen H_2 on monolayer TlP₅ at 0K; (c) top view and (d) side view of sixteen H_2 on monolayer TlP₅ during the simulation time of 5 *ps* at 300 K.

Figure S7 *Ab initio* molecules dynamics simulation for N_2 on monolayer TlP₅. The optimized (a) top view and (b) side view of sixteen N_2 on monolayer TlP₅ at 0K; (c) top view and (d) side view of sixteen N_2 on monolayer TlP₅ during the simulation time of 5 *ps* at 300 K.

Figure S8 *Ab initio* molecules dynamics simulation for CO_2 on monolayer TlP₅. The optimized (a) top view and (b) side view of sixteen CO_2 on monolayer TlP₅ at 0K; (c) top view and (d) side view of sixteen CO_2 on monolayer TlP₅ during the simulation time of 5 *ps* at 300 K.

Figure S9 *Ab initio* molecules dynamics simulation for H_2O on monolayer TlP₅. The optimized (a) top view and (b) side view of sixteen H_2O on monolayer TlP₅ at 0K; (c) top view and (d) side view of sixteen H_2O on monolayer TlP₅ during the simulation time of 5 *ps* at 300 K.

Figure S10 *Ab initio* molecules dynamics simulation for O_2 on monolayer TlP₅. The optimized (a) top view and (b) side view of sixteen O_2 on monolayer TlP₅ at 0K; (c) top view and (d) side view of sixteen O_2 on monolayer TlP₅ during the simulation time of 5 *ps* at 300 K.

The optimized lattice constants of *n*L (*n*=1, 2, 3, 4, 5) TlP₅ and bulk are listed in Table S2, with reference to experimental values. The optimized lattice parameters of monolayer TlP₅ are *a* =12.35 Å and *b* = 6.51 Å (note that the *a/b* here actually correspond to the *c/a* directions in bulk). Upon the increase in the number of layers, the lattice constants vary very little, indicating a relatively weak interlayer coupling in the TlP₅ system.

Table S2 The optimized lattice constants (a/b/c) in TlP₅ monolayer (1L), bilayer (2L), tri-layer (3L), four-layer (4L), five-layer (5L) and bulk, respectively, in comparison to the experimental values (Exp.) for the bulk.

Lattice constant	1L	2L	3L	4L	5L	Bulk	Exp. ²
a/Å	12.35	12.27	12.26	12.26	12.25	6.48	6.46
b/Å	6.51	6.49	6.49	6.48	6.48	7.01	6.92
c/Å						12.24	12.12

Figure S11 (a) Band structures of monolayer TlP₅ calculated using the PBE functional, either with or without considering the effect of spin orbit coupling (SOC). (b) Band structures of monolayer TlP₅ calculated using the screened HSE06 hybrid functional, either with or without considering the effect of SOC.

Figure S12 (a) Projected density of states of monolayer TlP₅. (b) Isosurfaces of partial charge densities corresponding to the VBM and CBM of monolayer TlP₅.

Figure S13 Electronic band structures of 2D TlP₅ with varying number of layers, calculated using the screened HSE06 hybrid functional: (a) bilayer; (b) trilayer; (c) four-layer; and (d) five-layer.

Figure S14 (a) The relationship between total energy and the applied strain δ along the *a* and *b* directions of monolayer TIP₅. The quadratic data fitting gives the in-plane stiffness of 2D structures. Black and red curves show the in-plane stiffness along the *a* and *b* directions of monolayer TIP₅, respectively. (b) The shift of VBMs and CBMs for monolayer TIP₅ with respect to the vacuum energy, as a function of the applied strain along either the *a* or the *b* direction. The linear fit of the data yields the deformation potential constant.

Table S3 The carrier mobilities μ_{2D} (× 10³ cm² V⁻¹s⁻¹) and energy bang gaps (eV, calculated at the HSE06 level) of phosphorene and their derivatives for comparison (only the monolayer is considered). The symbols *d* and *i* represent direct and indirect band gaps, respectively.

	Direction	TlP5	Phosphorene ³	Hittorfene ¹	InP ₃ ⁴	GeP ₃ ⁵	CaP ₃ ⁶	SnP ₃ ⁷
Electron	x	5.24	1.10~1.14	0.50	0.54	0.04	19.9	0.19
	У	13.96	0.08	0.43	1.92	0.07	1.75	0.21
Hole	x	7.56	0.64~0.70	0.31	0.006	0.014(0.35)	0.08	0.17
	у	1.51	10~26	7.68	0.05	0.19(2.36)	0.78	0.36
Band gap		2.02(<i>d</i>)	1.51(<i>d</i>)	2.5(<i>d</i>)	1.14(<i>i</i>)	0.55(<i>i</i>)	1.15(<i>d</i>)	0.72(<i>i</i>)

Figure S15 Electronic band structures of monolayer TlP₅ under various strain situations, calculated using the HSE06 functional. The applied strains are (a) uniaxial strain along *a*-axis; (b) uniaxial strain along *b*-axis (b); and (c) biaxial along both *a* and *b*.

REFRENCES

- Schusteritsch, G.; Uhrin, M.; Pickard, C. J. Single-Layered Hittorf's Phosphorus: A Wide-Bandgap High Mobility 2D Material. *Nano Letters* 2016, *16* (5), 2975–2980.
- (2) Olofsson, O.; Gullman, J.; Søtofte, I.; Beronius, P.; Engebretsen, J. E.; Ehrenberg, L. The Crystal Structure of TIP5. *Acta Chemica Scandinavica* 1971, 25, 1327–1337.
- (3) Qiao, J.; Kong, X.; Hu, Z.-X.; Yang, F.; Ji, W. High-Mobility Transport Anisotropy and Linear Dichroism in Few-Layer Black Phosphorus. *Nature Communications* 2014, 5 (1).
- Miao, N.; Xu, B.; Bristowe, N. C.; Zhou, J.; Sun, Z. Tunable Magnetism and Extraordinary Sunlight Absorbance in Indium Triphosphide Monolayer. J. Am. Chem. Soc. 2017, 139 (32), 11125–11131.
- (5) Jing, Y.; Ma, Y.; Li, Y.; Heine, T. GeP 3: A Small Indirect Band Gap 2D Crystal with High Carrier Mobility and Strong Interlayer Quantum Confinement. *Nano Letters* 2017, *17* (3), 1833–1838.
- (6) Lu, N.; Zhuo, Z.; Guo, H.; Wu, P.; Fa, W.; Wu, X.; Zeng, X. C. CaP₃: A New Two-Dimensional Functional Material with Desirable Band Gap and Ultrahigh Carrier Mobility. *The Journal of Physical Chemistry Letters* **2018**, *9* (7), 1728–1733.
- (7) Sun, S.; Meng, F.; Wang, H.; Wang, H.; Ni, Y. Novel Two-Dimensional Semiconductor SnP
 ³: High Stability, Tunable Bandgaps and High Carrier Mobility Explored Using First-Principles Calculations. *Journal of Materials Chemistry A* 2018, 6 (25), 11890–11897.