Photoluminescence Tuning in Novel Bi³⁺/Mn⁴⁺ Co-doped La₂ATiO₆:(A = Mg, Zn) Double Perovskite Structure: Phase Transition and Energy Transfer

Gongcheng Xing,^a Yuxin Feng,^a Min Pan,^a Yi Wei,^a Guogang Li,^{a,*} Peipei Dang,^b Sisi Liang,^b Maxim S. Molokeev, ^{c, d, e} Ziyong Cheng,^b Jun Lin^{b, f, *}

^aEngineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P. R. China

^bState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China

^cLaboratory of Crystal Physics, Kirensky Institute of Physics, FRC KSC SB RAS, Krasnoyarsk 660036, Russia

^dDepartment of Physics, Far Eastern State Transport University, Khabarovsk, 680021 Russia ^eSiberian Federal University, Krasnoyarsk, 660041, Russia

^fSchool of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, P. R. China

Figure S1. Difference Rietveld plot of $LM_{(1-w)}Z_w:0.005Bi^{3+}$, $0.002Mn^{4+}$: (a) w = 0.25; (b) w = 0.5; (c) w = 0.75; (d) w = 1.

Figure S2. The FWHM of emission peak located at $2\theta = 57.4^{\circ}$ in $LM_{(1-w)}Z_w:0.005Bi^{3+}, 0.002Mn^{4+}$ ($0 \le w \le 1$) samples. The obvious jump between w = 0 and w = 0.25 can be associated with the phase transition between *Pbnm* and *P2*₁/*n* phases.

Figure S3. The average Ti/Mg/Zn-O bond length per Zn concentration value in $LM_{(1-w)}Z_wT$:0.005Bi³⁺, 0.002Mn⁴⁺ ($0 \le w \le 1$).

Figure S4. Normalized PLE spectra of $LM_{(1-w)}T_w: 0.005Bi^{3+}, 0.002Mn^{4+}$ ($0 \le w \le 1$) monitored at 420 nm for Bi^{3+} .

Figure S5. The Gaussian fitting of PLE spectra of (a) LMT:0.005Bi³⁺, $0.002Mn^{4+}$ and (b) LZT:0.005Bi³⁺, $0.002Mn^{4+}$.

Figure S6. The CF distortion of $[Ti/Zn/Mg)O_6]$ polyhedron as a function of Zn^{2+} concentrations.

$$D = \frac{1}{N} \sum_{i=1}^{n} \frac{|d_i - d_{av}|}{d_{av}}$$

where D represents the lattice distortion, d_i is the distance from Ti/Zn/Mg to the ith coordinating O atoms, d_{av} is the average Ti/Zn/Mg–O distance, and N is the coordination numbers.

Figure S7. XRD patterns of (a) $L_{(1-u)}MT:uBi^{3+}$ ($0 \le u \le 0.03$); (b) $L_{(1-x)}ZT:xBi^{3+}$ ($0 \le x \le 0.03$); (c) $LMT_{(1-z)}:0.005Bi^{3+}, zMn^{4+}$ ($0 \le z \le 0.01$); (d) $LZT_{(1-y)}:0.005Bi^{3+}, yMn^{4+}$ ($0 \le y \le 0.01$).

Figure S8. (a) PLE (monitored at 417 nm), (b) PL (excited at 340 nm) and (c) Normalized PL spectra and integrated intensity of $L_{(1-u)}MT:uBi^{3+}$ ($0 \le u \le 0.03$) as a function of Bi^{3+} ions.

Figure S9. (a) PLE (monitored at 710 nm) and (b) PL (excited at 342 nm) spectra of $LMT_{(1-z)}:0.005Bi^{3+}, zMn^{4+}$ ($0 \le z \le 0.01$).

Figure S10. PL spectra and integrated intensity as a function of Bi^{3+} concentrations of $L_{(1-x)}ZT:xBi^{3+}$ ($0 \le x \le 0.03$).

Figure S11. (a) PLE (monitored at 710 nm) and (b) PL (excited at 394 nm) spectra of $LZT_{(1-y)}:0.005Bi^{3+}, yMn^{4+}$ ($0 \le y \le 0.01$).

Atom	x	v	Z	$B_{\rm iso}$	Occ.	
		Ŵ	= 0			
La	-0.0065 (3)	0.0242 (2)	0.25	1.04 (7)	1	
Ti	0.5	0	0	0.15(7)	0.5	
Mg	0.5	0	0	0.15(7)	0.5	
01	0.041 (2)	0.4898 (14)	0.25	0.92 (16)	1	
O2	0.727 (2)	0.272 (2)	0.0528 (14)	0.92 (16)	1	
	w = 0.25					
La	0.9949 (10)	0.0297 (2)	0.2492 (12)	0.76 (8)	1	
Zn1	0	0.5	0	1.9 (4)	0.50 (46)	
Mg1	0	0.5	0	1.9 (4)	0.50 (46)	
Ti1	0	0.5	0	1.9 (4)	0.00 (91)	
Ti2	0.5	0	0	0.3 (3)	1.00 (91)	
Zn2	0.5	0	0	0.3 (3)	0.00 (46)	
Mg2	0.5	0	0	0.3 (3)	0.00 (46)	
01	0.231 (7)	0.176 (7)	0.976 (5)	0.5 (3)	1	
O2	0.288 (6)	0.724 (6)	0.956 (5)	0.5 (3)	1	
O3	0.428 (5)	0.984 (2)	0.243 (7)	0.5 (3)	1	
w = 0.5						
La	0.9950 (10)	0.0327 (2)	0.2484 (12)	0.88 (7)	1	
Zn1	0	0.5	0	0.4 (8)	0.3 (15)	
Mg1	0	0.5	0	0.4 (8)	0.3 (15)	
Ti1	0	0.5	0	0.4 (8)	0.3 (29)	
Ti2	0.5	0	0	0.5 (7)	0.7 (29)	
Zn2	0.5	0	0	0.5 (7)	0.2 (15)	
Mg2	0.5	0	0	0.5 (7)	0.2 (15)	
01	0.225 (9)	0.183 (8)	0.982 (5)	0.5 (3)	1	
O2	0.296 (6)	0.720(7)	0.950 (5)	0.5 (3)	1	
03	0.426 (5)	0.981 (2)	0.245 (10)	0.5 (3)	1	
<i>w</i> = 0.75						
La	0.9953 (9)	0.03392 (18)	0.2508 (14)	0.80(7)	1	
Zn1	0	0.5	0	0.2 (4)	0.57 (10)	
Mg1	0	0.5	0	0.2 (4)	0.188 (35)	
Ti1	0	0.5	0	0.2 (4)	0.25 (14)	
Ti2	0.5	0	0	0.6 (5)	0.75 (14)	
Zn2	0.5	0	0	0.6 (5)	0.18 (10)	
Mg2	0.5	0	0	0.6 (5)	0.062 (35)	
01	0.241 (6)	0.183 (6)	0.974 (5)	0.5 (2)	1	
O2	0.310 (5)	0.725 (7)	0.965 (4)	0.5 (2)	1	
03	0.417 (4)	0.9863 (18)	0.248 (7)	0.5 (2)	1	
		W	= 1			
La	0.9936 (7)	0.03470 (14)	0.2498 (10)	0.99 (6)	1	
Zn1	0	0.5	0	0.7 (4)	0.849 (57)	
Ti1	0	0.5	0	0.7 (4)	0.151 (57)	
Ti2	0.5	0	0	0.6 (5)	0.849 (57)	
Zn2	0.5	0	0	0.6 (5)	0.151 (57)	
01	0.228 (7)	0.206 (7)	0.965 (5)	1.0 (2)	1	
O2	0.290 (6)	0.723 (7)	0.949 (5)	1.0 (2)	1	
O3	0.422 (3)	0.9854 (16)	0.240 (5)	1.0 (2)	1	

Table S1. Fractional atomic coordinates and isotropic displacement parameters (Å²) of $LM_{(1-w)}Z_wT$:0.005Bi³⁺,0.002Mn⁴⁺.

w = 0							
La—O1	2.602 (8)	La—O2 ⁱⁱ	2.420 (12)				
La—O1 ⁱ	2.982 (8)	La—O2 ^{vi}	2.937 (11)				
La—O1 ⁱⁱ	2.593 (12)	(Ti/Mg)—O1 ⁱⁱ	1.9802 (14)				
La—O1 ⁱⁱⁱ	2.974 (12)	(Ti/Mg)—O2	2.012 (12)				
La—O2 ^{iv}	2.551 (11)	(Ti/Mg)—O2 ^{vii}	2.020 (12)				
La—O2 ^v	3.288 (11)						
w = 0.25							
La—O1 ⁱ	2.65 (4)	La—O3 ^{viii}	2.43 (3)				
La—O1 ⁱⁱ	2.46 (4)	La—O3 ^{ix}	2.570 (12)				
La—O1 ⁱⁱⁱ	3.30 (4)	La—O3 ^x	3.079 (12)				
La—O1 ^{iv}	2.84 (4)	(Zn1/Mg1/Ti1)—O1 ^{xi}	2.23 (4)				
La—O2 ^v	3.30 (4)	(Zn1/Mg1/Ti1)—O2 ^{xi}	2.06 (3)				
La—O2 ^{vi}	2.64 (4)	(Zn1/Mg1/Ti1)—O3 ^{xii}	2.06 (5)				
La—O2 ⁱⁱⁱ	2.83 (4)	(Zn2/Mg2/Ti2)—O1 ^{xi}	1.80 (4)				
La—O2 ^{iv}	2.45 (4)	(Zn2/Mg2/Ti2)—O2 ^{xiii}	1.97 (3)				
La—O3 ^{vii}	3.17 (3)	(Zn2/Mg2/Ti2)—O3 ^{vii}	1.96 (5)				
W = 0.5							
La—O1 ⁱ	2.60 (4)	La—O3 ^{viii}	2.545 (14)				
La—O1 ⁱⁱ	2.50 (4)	La—O3 ^{ix}	3.114 (13)				
La—O1 ⁱⁱⁱ	2.86 (4)	(Zn1/Mg1/Ti1)—O1 ^x	2.17 (4)				
La—O2 ^{iv}	2.65 (4)	(Zn1/Mg1/Ti1)—O2 ^x	2.09 (4)				
La—O2 ^v	2.84 (4)	(Zn1/Mg1/Ti1)—O3 ^{xi}	2.05 (8)				
La—O2 ⁱⁱⁱ	2.40 (4)	(Zn2/Mg2/Ti2)—O1 ^x	1.85 (5)				
La—O3 ^{vi}	3.18 (3)	(Zn2/Mg2/Ti2)—O2 ^{xii}	1.98 (4)				
La—O3 ^{vii}	2.42 (3)	(Zn2/Mg2/Ti2)—O3 ^{vi}	1.98 (8)				
w = 0.75							
La—O1 ⁱ	2.71 (4)	La—O3 ^{viii}	2.37 (2)				
La—O1 ⁱⁱ	2.52 (4)	La—O3 ^{ix}	2.578 (11)				
La—O1 ⁱⁱⁱ	3.27 (4)	La—O3 ^x	3.103 (11)				
La—O1 ^{iv}	2.76 (4)	(Zn1/Mg1/Ti1)—O1 ^{xi}	2.23 (3)				
La—O2 ^v	3.34 (3)	(Zn1/Mg1/Ti1)—O2 ^{xi}	2.16 (3)				
La—O2 ^{vi}	2.76 (3)	(Zn1/Mg1/Ti1)—O3 ^{xii}	2.04 (5)				
La—O2 ⁱⁱⁱ	2.71 (3)	(Zn2/Mg2/Ti2)—O1 ^{xi}	1.78 (3)				
La—O2 ^{iv}	2.45 (3)	(Zn2/Mg2/Ti2)—O2 ^{xiii}	1.89 (3)				
La—O3 ^{vii}	3.24 (2)	(Zn2/Mg2/Ti2)—O3 ^{vii}	2.01 (5)				
<i>w</i> = 1							
La—O1 ⁱ	2.78 (4)	La—O3 ^{viii}	2.408 (18)				
La—O1 ⁱⁱ	2.49 (4)	La—O3 ^{ix}	2.571 (10)				
La—O1 ⁱⁱⁱ	3.30 (4)	La—O3 ^x	3.116 (9)				
La—O1 ^{iv}	2.68 (4)	(Zn1/Ti1)—O1 ^{xi}	2.10 (4)				
La—O2 ^v	3.38 (4)	(Zn1/Ti1)—O2 ^{xi}	2.08 (4)				
La—O2 ^{vi}	2.61 (4)	(Zn1/Ti1)—O3 ^{xii}	2.10 (4)				
La—O2 ⁱⁱⁱ	2.87 (4)	(Zn2/Ti2)—O1 ^{xi}	1.92 (4)				
La—O2 ^{iv}	2.42 (4)	(Zn2/Ti2)—O2 ^{xiii}	1.99 (4)				
La—O3 ^{vii}	3.198 (18)	(Zn2/Ti2)—O3 ^{vii}	1.95 (4)				

Table S2. Main bond lengths (Å) of $LM_{(1-w)}Z_wT:0.005Bi^{3+}, 0.002Mn^{4+}$

Symmetry codes:

for w = 0 sample (i) x, y-1, z; (ii) -x+1/2, y-1/2, -z+1/2; (iii) -x-1/2, y-1/2, -z+1/2; (iv) x-1, y, z; (v) -x+1, -y, -z; (vi) x-1/2, -y+1/2, -z; (vii) -x+3/2, y-1/2, z. for $w \ge 0.25$ samples (i) x+1, y, z-1; (ii) -x+1, -y, -z+1; (iii) -x+3/2, y-1/2, -z+3/2; (iv) x+1/2, -y+1/2, z-1/2; (v) x+1, y-1, z-1; (vi) -x+1, -y+1, -z+1; (vii) x, y-1, z; (viii) x+1, y-1, z; (ix) -x+3/2, y-1/2, -z+1/2; (x) -x+3/2, y-3/2, -z+1/2; (xi) x, y, z-1; (xii) -x+1/2, y-1/2, -z+1/2; (xiii) x, y-1, z-1.