Supplementary Information

Solution processed metal oxo cluster for rewritable resistive memories

Kui Zhou,^{a,b} Guanglong Ding,^a Chen Zhang,^a Ziyu Lv,^a Shenghuang Luo, ^c Ye Zhou, ^{*c} Li Zhou, ^a Xiaoli Chen,^a Huilin Li^a and Su-Ting Han^{*a}

^aShenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Electronic Science and Technology, Shenzhen University, 518060, P. R. China.

^bKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, 518060, P. R. China.

^cInstitute for Advanced Study, Shenzhen University, 518060, P. R. China.

*Email - netzhouye@hotmail.com

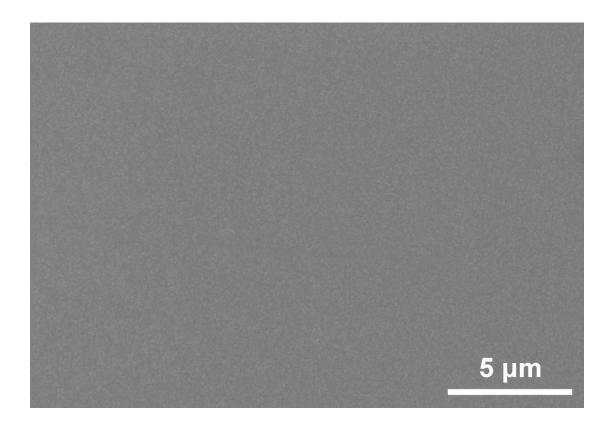
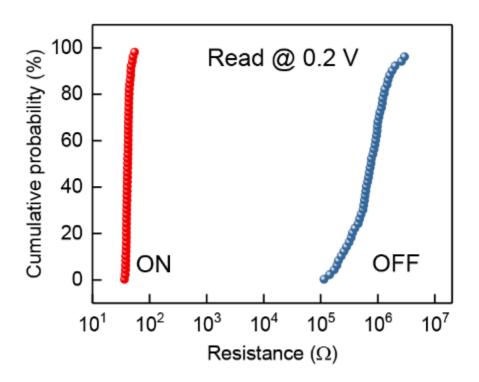
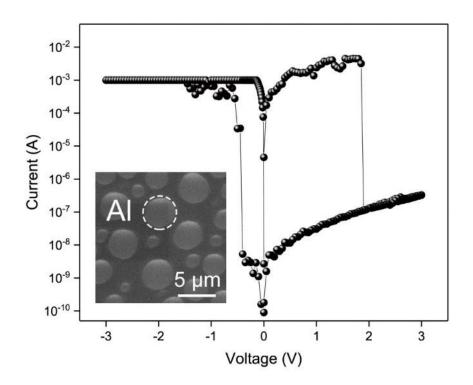
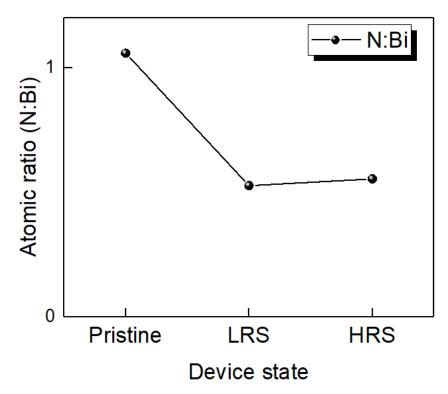
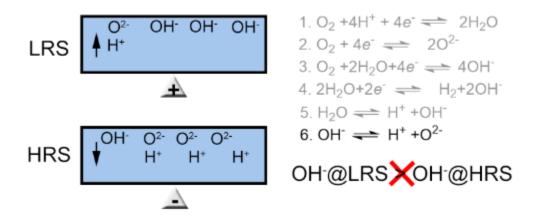
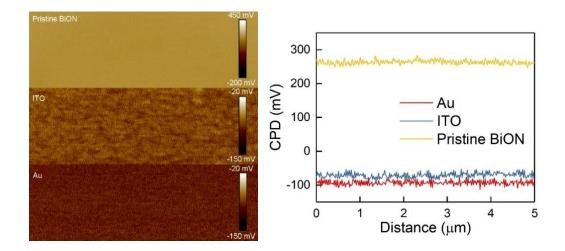




Figure S1. SEM of BiON NCs film on ITO glass.

Figure S2 the cumulative resistance probability presents a centralized resistance distribution of LRS (35~55 Ω) and HRS (1.1×10⁵~5.0×10⁶ Ω) with a reliable 10³ ON/OFF ratio.

Figure S3 The *I-V* switching behavior of the micro-device with top electrode Al (diameter $\sim 5 \ \mu m$) by using an electric probe (diameter of probe tip $\sim 1 \ \mu m$)

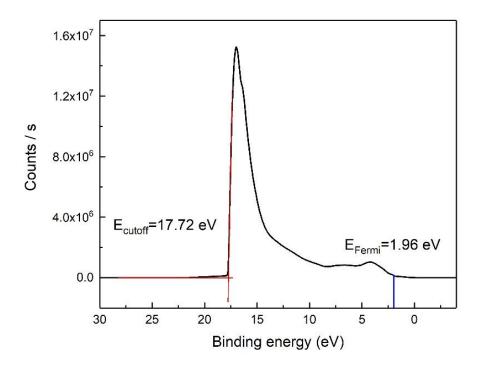

Figure S4 The atomic ratio of N: Bi for BiON in pristine state, LRS and HRS, respectively.

Figure S5. The schematic illustration of proton migration model. Reaction (1-5) could hardly occur since almost no water and oxygen can be observed in LRS and HRS (based on the result of XPS). Thus, the proton-induced OH⁻ content change should depend on Reaction (6). For example, an upward electric filed to simulate LRS, the H⁺ migrate to top surface of the film and combine with O²⁻ to form more OH⁻, leading to a higher OH⁻ content on the surface, i.e. OH⁻@LRS > OH⁻@HRS, which is contrary to XPS results (Table S1). In summary, the OH⁻ species was considered as the main mobile species rather than H⁺.

Figure S6. The work functions of the Au ($\varphi_{Au} = 5.1 \text{ eV}$ for calibration), bare ITO and pristine BiON film are measured by KPFM, the CPD values of which are about -90 mV, -70 mV and 260 mV, respectively. $\varphi_{TTO} = 5.1 \cdot (-0.09) + (-0.07) = 5.12 \text{ eV}$, $\varphi_{BiON} = 5.1 \cdot (-0.09) + 0.26 = 5.45 \text{ eV}$.

Figure S7. The ultraviolet photoelectron spectroscopy (UPS) of BiON nanocrystal, the work function $\varphi_{\text{BiON}} = h_n \cdot (E_{\text{Cutoff}} \cdot E_{\text{F}})$, $\varphi_{\text{BiON}} = 21.2 \text{ eV} \cdot (17.72 \text{ eV} \cdot 1.96 \text{ eV}) = 5.44 \text{ eV}$

O1s	Peak	Position	Area	Area ratio	
		(eV)		OH ⁻ /NO ₃ ⁻	O^{2-} / NO_{3-}
	NO ₃ -	531.66	42260.48		
LRS	OH	530.02	21471.41		
	O ²⁻	529.0	14570.04		
				0.51	0.34
	NO ₃ -	531.96	38180.73		
HRS	OH	530.11	31916.05		
	O ²⁻	529.31	11178.29		
				0.84	0.30

Table S1 the peak fitting of high resolution XPS of O1s $\,$

Table S2 XPS peaks identification and corresponding components in different depths of

 the device at LRS

Etching depth	Peaks identification	Corresponding components	Description
L1	O1s, Al2s, Al2p	AlO _x , Al	Top electrode with surface oxidation
L2	Al2s, Al2p	Al	Top electrode
L3	O1s, Bi4d, Bi4f, Al2s, Al2p	Al, AlO _x , BiON	Al/BiON interface
L4	O1s, Bi4d, Bi4f	BiON	BiON film
L5	O1s, Sn3d, In3d, Bi4d(weak), Bi4f	BiON, ITO	BiON/ITO interface
L6	O1s, Sn3d, In3d	ITO	Bottom electrode